в круге.
Невольно я стал думать, почему же эту церемонию описывают как безумное вращение, которое повергает дервишей в ярость? Ведь если и есть в мире нечто противоположное ярости, то именно это верчение. В н?м имелась какая-то система, которую я не мог понять, но которая явно угадывалась; и, что ещ? более важно, в н?м было интеллектуальное сосредоточение, умственное усилие, как будто дервиши не просто вертелись, но и одновременно решали в уме труднейшие задачи.
Я вышел из тэккэ на улицу, полный необычных и беспокойных впечатлений. Я догадывался, что наш?л нечто невероятно ценное и важное; но в то же время понимал, что у меня нет средств понять найденное, нет возможности подойти к нему ближе, нет даже языка.
Вс?, что я раньше проч?л и понял о дервишах, не объясняло мне загадку, с которой я столкнулся. Я знал, что орден мевлеви был основан в XIII веке персидским поэтом и философом Джалаледдином Руми, что верчение дервишей схематически изображает Солнечную систему и вращение планет вокруг Солнца, что дервиши пронесли через столетия свой статут, правила и даже одеяние совершенно нетронутыми. Я также знал, что знакомство с существующей литературой о дервишах приносит глубокое разочарование, потому что в ней оста?тся обойд?нным самое важное. Так что теперь, когда я сам увидел дервишей, я сформулировал для себя важнейшие, относящиеся к ним проблемы. Первая: как им уда?тся не натыкаться друг на друга, даже не касаться друг друга? И вторая: в ч?м заключается секрет этого напряж?нного умственного усилия, связанного с верчением, усилия, которое я видел, но не мог определить? Впоследствии я узнал, что ответ на первый вопрос является одновременно ответом и на второй.


Константинополь исчез, подобно сну. Я побывал в других тэккэ, в Эйюбе, в Скутари; повидал других дервишей. И вс? это время чувство тайны продолжало усиливаться.
Вертящиеся дервиши мевлеви и 'воющие' дервиши в Скутари стояли как-то особняком от всего, что я когда-либо знал или встречал в жизни, отличались от всего этого. Когда я думал о них, я вспоминал слова одного хорошо известного человека в Москве; он посмеялся надо мной, когда я сказал, что Восток хранит многое такое, что ещ? неизвестно.
'Неужели вы действительно верите, что на Востоке осталось что-то неисследованное? - спросил он. - О Востоке написано столько книг; так много серь?зных уч?ных посвятило ему свою жизнь, изучая каждую пядь его земли, каждое племя, каждый обычай. Просто наивно думать, будто на Востоке осталось что-нибудь чудесное и неизвестное. Мне легче поверить в чудеса на Кузнецком мосту'.
Сказанное звучало очень умно, и я почти согласился с ним. Но теперь я сам оказался на Востоке, и первое, что я там встретил, было чудом. И чудо это происходило у всех на виду, почти на улице. Главная улица, Пера, была 'Кузнецким мостом' Константинополя. И никто не мог объяснить мне этого чуда, потому что никто ничего о н?м не знал.


Прошло двенадцать лет, прежде чем я снова встретил дервишей.
Я повидал многие страны; за это время случилось много событий. Из тех людей, которые сопровождали меня в первую поездку в Константинополь, уже никого не было. Не было даже России, ибо за последние три года позади меня как бы происходили обвалы. В этот совершенно непостижимый период пути назад не было, и я испытывал к местам и людям то же самое чувство, которое мы обычно испытываем ко времени.
Не было никакой возможности вернуться ни в одно из тех мест, которые я оставлял. Ни от кого, с кем я расставался, не было больше вестей.
Но когда я увидел с корабля в тумане минареты Стамбула, а по другую сторону башню Галаты, мне тут же пришла на ум мысль о том, что скоро я увижу дервишей.
И вскоре я их увидел. Константинополь стал ещ? более шумным, если это вообще возможно; но, несмотря на новые толпы, он казался опустевшим. За эти годы бедный город наполовину утратил свой восточный колорит и быстро приобретал однообразный и отталкивающий облик европейского города. Однако в тэккэ дервишей на Пера вс? было так же, как и прежде: те же старые надгробия, те же платаны, та же тихая музыка, те же (или похожие на них) спокойные лица. После двенадцати лет нельзя быть уверенным, но мне показалось, что несколько лиц я узнал.
Теперь я знал о них больше; знал часть их тайны, знал, как они это делают, знал, в ч?м заключается умственная работа, связанная с верчением. Не детали, конечно, потому что детали знает только тот, кто сам принимает участие в церемониях или упражнениях; но я знал принцип.
Вс? это не уменьшило чуда; оно лишь приблизилось и стало более значительным. Вместе с тем я понял, почему дервиши не открывают своего секрета. Легко рассказать, что они делают и как делают. Но для того, чтобы вполне это понять, нужно сначала знать, зачем они это делают. А об этом рассказать нельзя.


Я опять уехал; и вскоре почва за мной снова обвалилась, так что вернуться в Константинополь стало невозможным.
А немного времени спустя исчезли и сами дервиши. Просвещ?нные правители новой Турции запретили всякую деятельность 'астрологов, предсказателей и дервишей'. В тэккэ на Пера ныне находится полицейский участок.

1909 - 1925 гг.


Глава 10. НОВАЯ МОДЕЛЬ ВСЕЛЕННОЙ

Вопрос о форме вселенной. - История вопроса. - Геометрическое и физическое пространство. - Сомнительность их отождествления. - Четв?ртая координата физического пространства. - Отношение физических наук к математике. - Старая и новая физика. - Основные приницпы старой физики. - Пространство, взятое отдельно от времени. - Принцип единства законов. - Прицип Аристотеля. - Неопредел?нные величины старой физики. - Метод разделения, употребляемый вместо определения. - Органическая и неорганическая материя. - Элементы. - Молекулярное движение. - Броуновское движение. - Принцип сохранения материи. - Относительность движения. - Измерения величин. - Абсолютные единицы измерений. - Закон всемирного тяготения. - Действие на расстоянии. - Эфир. - Гипотезы о природе света. - Эксперимент Майкельсона. - Морли. - Скорость света как ограничивающая скорость. - Преобразования Лоренца. - Квантовая теория. - Весомость света. - Математическая физика. - Теория Эйнштейна. - Сжатие движущихся тел. - Специальный и общий принципы относительности. - Четыр?хмерный континуум. - Геометрия, исправленная и дополненная согласно Эйнштейну. - Отношение теории относительности к опыту. - 'Моллюск' Эйнштейна. - Конечное пространство. - Двухмерное сферическое пространство. - Эддингтон о пространстве. - Об исследовании структуры лучистой энергии. - Старая физика и новая физика.
- Недостаточность четыр?х координат для построения модели вселенной. - Отсутствие возможности математического подхода к этой проблеме. - Искусственность обозначения измерений степенями. - Необходимая ограниченность вселенной по отношению к измерениям. - Тр?хмерность движения. - Время как спираль. - Три измерения времени. - Шестимерное пространство. - 'Период шести измерений'. - Два пересекающихся треугольника, или шестиконечная звезда. - Тело времени. - 'Историческое время' как четв?ртое измерение. - Пятое измерение. - 'Ткань' и 'основа'. - Ограниченное число возможностей в каждом моменте. - Вечное Теперь. - Осуществление всех возможностей. - Прямые линии. - Ограниченность бесконечной вселенной. - Нулевое измерение. - Линия невозможного. - Седьмое измерение. - Движение. - Четыре вида движения. - Разделение скоростей. - Восприятие третьего измерения животными. - Скорость как угол. - Предельная скорость. - Пространство. - Разнородность пространства. - Зависимость измерений от величины. - Разнообразие пространства. - Материальность и е? степени. - Мир внутри молекулы. - 'Притяжение' - Масса. - Небесное пространство. - Следы движения. - Градации в структуре материи. - Невозможность описания материи как агрегата атомов или электронов. - Мир взаимосвязанных спиралей. - Принцип симметрии. - Бесконечность. - Бесконечность в математике и геометрии. - Несоизмеримость. - Разный смысл бесконечности в математике, геометрии и физике. - Функция и размеры. - Переход явлений пространства в явления времени. - Движение, переходящее в протяж?нность. - Нулевые и отрицательные величины. - Протяж?нность внутриатомных пространств. - Разложение луча света. - Световые кванты. - Электрон. - Теория колебаний и теория излучений. Длительность существования малых единиц. - Длительность существования электронов.


I

При любой попытке изучения мира и природы человек неизбежно оказывается лицом к лицу с целым рядом вопросов, на которые он не в состоянии дать прямых ответов. Однако, от того, призна?т или не призна?т он эти вопросы, как их формулирует, как к ним относится, зависит весь дальнейший процесс его мышления о мире, а значит, и о самом себе.
Вот важнейшие из этих вопросов: Какую форму имеет мир? Что такое мир: хаос или система? Возник ли мир случайно или был создан согласно некоторому плану?
И хотя это может на первый взгляд показаться странным, то или иное решение первого вопроса, т.е. вопроса о форме мира, фактические предрешает возможные ответы на другие вопросы - на второй и на третий.
Если вопросы о том, является ли мир хаосом или системой, возник он случайно или был создан согласно плану, разрешаются без предварительного определения формы мира и не вытекают из такого определения, то подобные решения неубедительны, требуют 'веры' и не в состоянии удовлетворить человеческий ум. Только в том случае, когда ответы на эти вопросы вытекают из определения формы мира, они оказываются достаточно точными и определ?нными.
Нетрудно доказать, что господствующая ныне общая философия жизни основана на таких решениях этих тр?х фундаментальных вопросов, которые могли бы считаться научными в XIX веке; а открытия XX и даже конца XIX столетия до сих пор не повлияли на обычную мысль или очень слабо на не? повлияли. Нетрудно также доказать, что все дальнейшие вопросы о мире, формулировка и разработка которых составляет предмет научной, философской и религиозной мысли, возникают из этих тр?х фундаментальных вопросов.
Но, несмотря на свою первостепенную важность, вопрос о форме мира сравнительно редко возникал самостоятельно; обычно его включали в другие проблемы - космологические, космогонические, астрономические, геометрические, физические и т.п. Средний человек был бы немало удивл?н, если бы ему сказали, что мир может иметь какую-то форму. Для него мир формы не имеет.
Однако, чтобы понять мир, необходимо иметь возможность построить некоторую модель вселенной, хотя бы и несовершенную. Такую модель мира, такую модель вселенной невозможно построить без определ?нной концепции формы вселенной. Чтобы сделать модель дома, нужно знать форму дома; чтобы сделать модель яблока, нужно знать форму явлока. Поэтому, прежде чем переходить к принципам, на которых можно построить новую модель вселенной, необходимо рассмотреть, хотя бы в виде краткого резюме, историю вопроса о форме вселенной, нынешнее состояние этого вопроса в науке, а также 'модели', которые были построены до самого последнего времени.
Древние и средневековые космогонические и космологические концепции экзотерических систем (которые одни только и известны науке) никогда не были ни особенно ясными, ни интересными. Сверх того, вселенная, которую они изображали, была очень маленькой вселенной, гораздо меньше нынешнего астрономического мира. Поэтому я не стану говорить о них.
Наше изучение разных взглядов на вопрос о форме мира начн?тся с того момента, когда астрономические и физико-механические системы отказались от идеи Земли как центра мира. Исследуемый период охватывает несколько веков. Но фактически мы займ?мся только последним столетием в основном, периодом с конца первой четверти XIX века.
К тому времени науки, исследующие мир природы, уже давно разделились: их взаимоотношения после разделения были такими же, как и сейчас, во всяком случае, какими они были до недавнего времени.
Физика изучала явления окружающей нас материи.
Астрономия - движение 'небесных тел'.
Химия пыталась проникнуть в тайны строения и состава материи.
Эти три физические науки основывали свои концепции формы мира исключительно на геометрии Евклида. Геометрическое пространство принималось за физическое пространство, и между ними не делалось никаких различий; пространство рассматривалось отдельно от материи, подобно тому, как ящик и его положение можно рассматривать независимо от его содержания.
Пространство понималось, как 'бесконечная сфера'. Бесконечная сфера геометрически определялась только центром, т.е. любой точкой и исходящими из этой точки тремя радиусами, перпендикулярными друг другу. И бесконечная сфера рассматривалась, как совершенно аналогичная во всех отношениях и физических свойствах конечной, ограниченной сфере.
Вопрос о несоответствии между геометрическим, евклидовым тр?хмерным пространством, бесконечным или конечным, с одной стороны, и физическим пространством, с другой, возникал очень редко и не препятствовал развитию физики в тех направлениях, какие были для не? возможны.
Только в конце XVIII и в начале XIX века идея их возможного несоответствия, сомнение в правильности отождествления физического пространства с геометрическим сделались настоятельными; тем более нельзя было обойти их молчанием в конце XIX века.
Эти сомнения возникли, во-первых, благодаря попыткам пересмотреть геометрические основы, т.е. или доказать аксиомы Евклида, или установить их несостоятельность; во-вторых, благодаря самому развитию физики, точнее механики, той части физики, которая занята движением; ибо е? развитие привело к убеждению, что физическое пространство невозможно расположить в геометрическом пространстве, что физическое пространство постоянно выходит за пределы геометрического. Геометрическое пространство удавалось принимать за физическое, только закрывая глаза на то, что геометрическое пространство неподвижно, что оно не содержит времени, необходимого для движения, что расч?т любой фигуры, являющейся результатом движения, например, такой, как винт, уже требует четыр?х координат.
Впоследствии изучение световых явлений, электричества, магнетизма, а также исследование строения атома настоятельно потребовали расширения концепции пространства.
Результат даже чисто геометрических умозрений относительно истинности или неистинности аксиом Евклида был двояким, с одной стороны, возникло убеждение, что геометрия является чисто теоретической наукой, которая имеет дело исключительно с аксиомами и является полностью заверш?нной; что к ней нельзя ничего прибавить и ничего в ней изменить; что геометрия - такая наука, которую нельзя приложить ко всем встречающимся фактам и которая оказывается верной только при определ?нных условиях, зато в пределах этих условий над?жна и незаменима. С другой стороны, возникло разочарование в геометрии Евклида, вследствие чего появилось желание перестроить е? на новой основе, создать новую модель, расширить геометрию и превратить е? в физическую науку, которую можно было бы приложить ко всем встречающимся фактам без необходимости располагать эти факты в искусственном порядке. Первый взгляд на геометрию Евклида был правильным, второй - ошибочным; но можно сказать, что в науке восторжествовала именно вторая точка зрения, и это в значительной мере замедлило е? развитие. Но к этому пункту я ещ? вернусь.
Идеи Канта о категориях пространства и времени как категориях восприятия и мышления никогда не входили в научное, т.е. физическое мышление, несмотря на позднейшие попытки ввести их в физику. Научная физическая мысль развивалась независимо от философии и психологии; эта мысль всегда считала, что пространство и время обладают объективным существованием вне нас, в силу чего предполагалось возможным выразить их взаимоотношения математически.
Однако развитие механики и других физических дисциплин привело к необходимости признать четв?ртую координату пространства в дополнение к тр?м фундаментальным координатам; длине, ширине и высоте. Идея четв?ртой координаты, или четв?ртого измерения пространства, постепенно становилась вс? более неизбежной, хотя долгое время она оставалась своеобразным 'табу'.
Материал для создания новых гипотез о пространстве скрывался в работах математиков - Гаусса, Лобачевского, Заккери, Бойяи и особенно Римана, который уже в пятидесятых годах прошлого века рассматривал вопрос о возможности совершенно нового понимания пространства. Никаких попыток психологического исследования проблемы пространства и времени сделано не было. Идея четв?ртого измерения долгое время оставалась как бы под сукном. Специалисты рассматривали е? как чисто математическую проблему, а неспециалисты - как проблему мистическую и оккультную.
Но если мы сделаем краткий обзор развития научной мысли с момента появления этой идеи в начале XIX века до сегодняшнего дня, это поможет нам понять то направление, в котором способна развиваться данная концепция; в то же время мы увидим, что она говорит нам (или может сказать) о фундаментальной проблеме формы мира.
Первый и важнейший вопрос, который здесь возникает, - это вопрос об отношении физической науки к математике. С общепринятой точки зрения считается признанным, что математика изучает количественные взаимоотношения в том же самом мире вещей и явлений, который изучают физические науки. Отсюда вытекают ещ? два положения: первое - что каждое математическое выражение должно иметь физический эквивалент, хотя в данный момент он, возможно, ещ? не открыт; и второе - что любое физическое явление можно выразить математически.
На самом же деле ни одно из этих положений не имеет ни малейшего основания; принятие их в качестве аксиом задерживает прогресс науки и мышления как раз по тем линиям, где такой прогресс более всего необходим. Но об этом мы поговорим позднее.
В следующем ниже обзоре физических наук мы остановимся только на физике. А в физике особое внимание нам необходимо обратить на механику: приблизительно с середины XVIII века механика занимала в физике господствующее положение, в силу чего до недавнего времени считалось возможным и даже вероятным найти способ объяснения всех физических явлений как явлений механических, т.е. явлений движения. Некоторые уч?ные пошли в этом направлении ещ? дальше: не довольствуясь допущением о возможности объяснить физические явления как явления движения, они уверяли, что такое оюъяснение уже найдено и что оно объясняет не только физические явления, но также биологические и мыслительные процессы.
В настоящее время нередко делят физику на старую и новую; это деление, в общем, можно принять, однако не следует понимать его слишком буквально.
Теперь я попробую сделать краткий обзор фундаментальных идей старой физики, которые привели к необходимости построения 'новой физики', неожиданно разрушившей старую; а затем перейду к идеям новой физики, которые приводят к возможности построения 'новой модели вселенной', разрушающей новую физику точно так же, как новая физика разрушила старую.
Старая физика просуществовала до открытия электрона. Но даже электрон понимался ею как существующий в том же искусственном мире, управляемом аристотелевскими и ньютоновскими законами, в котором она изучала видимые явления; иначе говоря, электрон был воспринят как нечто, существующее в том же мире, где существуют наши тела и другие соизмеримые с ними объекты. Физики не поняли, чьл электрон принадлежит другому миру.
Старая физика базировалась на некоторых незыблемых основагиях. Время и пространство старой физики обладали вполне определ?нными свойствами. Прежде всего, их можно было рассматривать и вычислять отдельно, т.е. как если бы положение какой-либо вещи в пространстве никоим образом не влияло на е? положение во времени и не касалось его. Далее, для всего существующего имелось одно пространство, в котором и происходили все явления. Время также было одним и тем же для всего существующего в мире; оно всегда и для всего измерялось по одной шкале. Иными словами, считалось допустимым, чтобы все движения, возвожные во вселенной, измерялись одной мерой.
Краеугольным камнем понимания законов вселенной в целом был принцип Аристотеля, утверждавший единство законов во вселенной.
Этот принцип в его современном понимании можно сформулировать следующим образом: во всей вселенной и при всех возможных условиях законы природы обязаны быть одинаковыми; иначе говоря, закон, установленный в одном месте вселенной, должен иметь силу и в любом другом е? месте. На этом основании наука при исследовании явлений на Земле и в Солнечной системе предполагает существование одинаковых явлений на других планетах и в других зв?здных системах.
Данный принцип, приписываемый Аристотелю, на самом деле никогда не понимался им самим в том смысле, какой он приобр?л в наше время. Вселенная Аристотеля сильно отличалась от того, как мы представляем е? сейчас. Человеческое мышление во времена Аристотеля не было похоже на человеческое мышление нашего времени. Многие фундаментальные принципы и отправные точки мышления, которые мы считаем тв?рдо установленными, Аристотелю ещ? приходилось доказывать и устанавливать.
Аристотель стремился установить принцип единства законов, выступая против суеверий, наивной магии, веры в чудеса и т.п. Чтобы понять 'принцип Аристотеля', необходимо уяснить себе, что ему ещ? приходилось доказывать, что если все собаки вообще не способны говорить на человеческом языке, то и одна отдельная собака, скажем, где-то на острове Крите, также не может говорить; или если деревья вообще не способны самостоятельно передвигаться, то и одно отдельное дерево также не может передвигаться - и т.д.
Вс? это, разумеется, давно забыто; теперь к принципу Аристотеля сводят идею о постоянстве всех физических понятий, таких как движение, скорость, сила, энергия и т.п. Это значит: то, что когда-то считалось движением, всегда оста?тся движением; то, что когда-то считалось скоростью, всегда оста?тся скоростью - и может стать 'бесконечной скоростью'.
Разумный и необходимый в сво?м первоначальном смысле, принцип Аристотеля представляет собой не что иное, как закон общей согласованности явлений, относящийся к логике. Но в его современном понимании принцип Аристотеля целиком ошибочен.
Даже для новой физики понятие бесконечной скорости, которое проистекает исключительно из 'принципа Аристотеля', стало невозможным; необходимо отбросить этот принцип, прежде чем заниматься построением новой модели вселенной. Позже я вернусь к этому вопросу.
Если говорить о физике, то прид?тся прежде всего подвергнуть анализу само определение этого предмета. Согласно школьным определениям, физика изучает 'материю в пространстве и явления, происходящие в этой материи'. Здесь мы сразу же сталкиваемся с тем, что физика оперирует неопредел?нными и неизвестными величинами, которые для удобства (или из-за трудности определния) принимает за известные, даже за понятия, не требующие определения.
В физике формально различаются: во-первых, 'первичные' величины, идея которых считается присущей всем людям. Вот как перечисляет эти 'первичные величины' в сво?м 'Курсе физики' Хвольсон:
'Протяж?нность - линейная, пространственная и объ?мная, т.е. длина отрезка, площадь какой-то части поверхности и объ?м какой-то части пространства, ограниченной поверхностями; протяж?нность, таким образом, является мерой величины и расстояния.
Время.
Скорость равномерного прямолинейного движения.'
Естественно, это лишь примеры, и Хвольсон не настаивает на полноте перечня. На самом деле, такой перечень очень длинен: он включает понятия пространства, бесконечности, материи, движения, массы и т.д. Одним словом, почти все понятия, которыми оперирует физика, относятся к неопредел?нным и не подлежащим определению. Конечно, довольно часто не уда?тся избежать оперирования неизвестными величинами. Но традиционный 'научный' метод состоит в том, чтобы не признавать ничего неизвестного, а также считать 'величины', не поддающиеся определению, 'первичными', идея которых присуща каждому человеку. Естественным результатом такого подхода оказывается то, что вс? огромное здание науки, возвед?нное с колоссальными трудностями, стало искусственным и нереальным.
В определении физики, привед?нном выше, мы встречаемся с двумя неопредел?нными понятиями: пространство и материя.
Я уже упоминал о пространстве на предыдущих страницах. Что же касается материи, то Хвольсон пишет:
'Употребление термина 'материя' было ограничено исключительно материей, которая способна более или менее непосредственно воздействовать на наши органы осязания'.
Далее материя подразделяется на органическую (из которой состоят живые организмы - животные и растения) и неорганическую.
Такой метод разделения вместо определения применяется в физике всюду, где определение оказывается невозможным или трудным, т.е. по отношению ко всем фундаментальным понятиям. Позднее мы часто с этим встретимся.
Различие между органической и неорганической материей обусловлено только внешними признаками. Происхождение органической материи считается неизвестным. Переход от неорганической материи к органической можно наблюдать в процессах питания и роста; полагают, что такой переход имеет место только в присутствии уже существующей органической материи и совершается благодаря е? воздействию. Тайна же первого перехода оста?тся сокрытой (Хвольсон).
С другой стороны, мы видим, что органическая материя легко переходит в неорганическую, теряя те неопредел?нные свойства, которые мы называем жизнью.
Было сделано немало попыток рассмотреть органическую материю как частный случай неорганической и объяснить все явления, происходящие в органической материи (т.е. явления жизни) как комбинацию физических явлений. Но все эти попытки, как и попытки искусственного создания органической материи из материи неорганической, ни к чему не привели. Тем не менее, они наложили заметный отпечаток на обще-философское 'научное' понимание жизни, с точки зрения которого 'искусственное создание жизни' призна?тся не только возможным, но и уже частично достигнутым. Последователи этой философии считают, что название 'органическая химия', т.е. химия, изучающая органическую материю, имеет лишь историческое значение; они определяют е?, как 'химию углеродистых соединений', хотя и не могут не признать особого положения химии углеродистых соединений и е? отличия от неорганической химии.
Неорганическая материя, в свою очередь, делится на простую и сложную (и принадлежит к области химии). Сложная материя состоит из так называемых химических соединений несколько простых видов материи. Материю каждого вида можно разделить на очень малые части, называемые 'частицами'. Частица - это мельчайшее количество данного вида материи, которое способно проявлять, по крайней мере, главные свойства этого вида. Дальнейшие подразделения материи - молекула, атом, электрон - настолько малы, что, взятые в отдельности, не обладают уже никакими материальными свойствами, хотя на последний факт никогда не обращали достаточного внимания.
Согласно современным научным идеям, неорганическая материя состоит из 92 элементов, или единиц простой материи, хотя не все они ещ? открыты. Существует гипотеза, что атомы разных элементов суть не что иное, как сочетания определ?нного количества атомов водорода, который в данном случае считается фундаментальной, первичной материей. Есть несколько теорий о возможности или невозможности перехода одного элемента в другой; в некоторых случаях такой переход был установлен - что опять-таки противоречит 'принципу Аристотеля'.
Органическая материя или 'углеродистые соединения', в действительности состоит из четыр?х элементов: водорода, кислорода, углерода и азота, а также из незначительных примесей других элементов.
Материя обладает многими свойствами, такими как масса, объ?м, плотность и т.п., которые в большинстве случаев поддаются определению лишь в их взаимосвязи.
Температура тела призна?тся зависящей от движения молекул. Считается, что молекулы находятся в постоянном движении; как это определяется в физике, они непрерывно сталкиваются друг с другом и разлетаются во всех направлениях, а затем возвращаются обратно. Чем интенсивнее их движение, тем сильнее толчки при столкновениях и тем выше температура тела; такое движение называется броуновским.
Если бы подобное явление действительно имело место, это означало бы примерно следующее: несколько сотен автомобилей, движущихся в разных направлениях по большой городской площади, ежеминутно сталкиваются друг с другом и разлетаются в разные стороны, оставаясь неповрежд?нными.
Любопытно, что быстро движущаяся кинолента вызывает аналогичеую иллюзию. Движущиеся объекты утрачивают свою индивидуальность; кажется, что они сталкиваются друг с другом и разлетаются в разных направлениях или проходят друг сквозь друга. Автор видел однажды кинофильм, на котором была снята площадь Согласия в Париже с автомобилями, летящими отовсюду и во всевозможных направлениях. Впечатление такое, будто автомобили каждое мгновение с силой сталкиваются друг с другом и разлетаются в стороны, вс? время оставаясь в пределах площади и не покидая е?.
Как может быть, чтобы материальные тела, обладающие массой, весом и очень сложной структурой, сталкивались с огромной скоростью и разлетались в стороны, не разбиваясь и не разрушаясь, - физика не объясняет.
Одним из важнейших завоеваний физики было установление принципа сохранения материи. Этот принцип состоит в признании того, что материя никогда, ни при каких физических или химических условиях не созда?тся заново и не исчезает: общее е? количество оста?тся неизменным. С принципом сохранения материи связаны установленные впоследствии принципы сохранения энергии и сохранения массы.
Механика - это наука о движении физических тел и о причинах, от которых может зависеть характер этого движения в отдельных частных случаях (Хвольсон).
Однако так же, как и в случае иных физических понятий, само движение не имеет в физике определения. Физика только устанавливает свойства движения: длительность, скорость, направление, без которых какое-либо явление нельзя назвать движущимся.
Разделение (и порой определение) вышеназванных свойств подменяет собой определения движения, прич?м установленные признаки относят к самому движению. Так, движение разделяется на прямолинейное и криволинейное, непрерывное и прерывистое, ускоренное и замедленное, равномерное и неравномерное.
Установление принципа относительности движения привело к целой серии выводов; вощник вопрос если движение материальной точки можно определить только е? положением относительно других тел и точек, как определить это движение в том случае, когда другие тела и точки тоже движутся? Этот вопрос стал особенно сложным, когда было установлено (не просто философски, в смысле гераклитовского panta ret, но вполне научно, с вычислениями и диаграммами), что во вселенной нет ничего неподвижного, что вс? без исключения так или иначе движется, что одно движение можно установить лишь относительно другого. Вместе с тем, были установлены и случаи кажущейся неподвижности. Так, выяснилось, что отдельные составные части равномерно движущейся системы тел сохраняют одинаковое положение по отношению друг к другу, как если бы вся система была неподвижной. Таким образом, предметы внутри ьыстро движущегося вагона ведут себя совершенно так же, как если бы этот вагон стоял неподвижно. В случае двух или более движущихся систем, например, в случае двух поездов, которые идут по разным путям в одинаковом или противоположном направлениях, оказывается, что их относительная скорость равна разности между скоростями или их сумме в зависимости от направления движения. Так, два поезда, движущиеся навстречу друг другу, будут сближаться со скоростью, равной сумме их скоростей. Для одного поезда, который обгоняет другой, второй поезд будет двигаться в направлении, противоположном его собственному, со скоростью, равной разности между скоростями поездов. То, что обычно называют скоростью поезда, есть скорость, приписываемая поезду, наблюдаемому во время его передвижения между двумя объектами, которые для него являются неподвижными, например, между двумя станциями, и т.п.
Изучение движения вообще, и колебательного и волнового движения в частности, оказало на развитие физики огромное влияние. В волновом движении увидели универсальный принцип; были предприняты попытки свести все физические явления к колебательному движению.


Одним из фундаментальных методов физики является метод измерения величин.
Измерение величин базируется на определ?нных принципах; важнейший из них - принцип однородности, а именно: величины, принадлежащие к одному и тому же порядку и отличающиеся друг от друга лишь в количественном отношении, называются однородными величинами; считается доступным сравнивать их и измерять одну по отношению к другой. Что же касается различных по порядку величин, то измерять одну из них по отношению к другой признано невозможным.
К несчастью, как уже было сказано выше, в физике лишь немногие величины определяются; обычно же определения заменяются наименованием.
Но поскольку всегда могут возникнуть ошибки в наименованиях и качественно различные величины получают одинаковые наименования, и наоборот, качественно идентичные величины будут названы по-разному, физические величины оказываются ненад?жными. Это тем более так, что здесь чувствуется влияние принципа Аристотеля, т.е. величина, однажды признанная в качестве величины определ?нного порядка, всегда оставалась величиной этого порядка. Разные формы энергии перетекали одна в другую, материя переходила из одного состояния в другое; но пространство (или часть пространства) всегда оставалось пространством, время - временем, движение всегда оставалось движением, скорость - скоростью и т.п.
На этом основании было решено считать несоизмеримыми такие величины, которые являются качественно разнородными. Величины, отличающиеся только количественно, считаются соизмеримыми.
Продолжая рассматривать измерение величин, необходимо указать, что единицы измерения, которыми пользуются в физике, довольно случайны и не связаны с измеряемыми величинами. Единицы измерения обладают только одним общим свойством - все они откуда-то заимствованы. Ни разу ещ? самое характерное свойство данной величины не принималось за его меру.
Искусственность мер в физике, конечно, ни для кого не секрет, и с пониманием этой искусственности связаны, например, попытки установить единицей длины часть меридиана. Естественно, эти попытки ничего не меняют; брать ли в качестве единицы измерения какую-то часть человеческого тела, 'фут', или часть меридиана, 'метр', обе они одинаково случайны. Но в действительности вещи содержат в себе свои собственные меры; и найти их - значит, понять мир. Физика лишь смутно об этом догадывается, но до сих пор к таким мерам даже не приблизилась.
В 1900 году проф. Планк создал систему 'абсолютных единиц', в основу которой положены 'универсальные константы', а именно: первая - скорость света в вакууме; вторая - гравитационная постоянная; третья - постоянная величина, которая играет важную роль в термодинамике (энергия, дел?нная на температуру); четв?ртая - постоянная величина, называемая 'действием' (энергия, умноженная на время), которая представляет собой наименьшее возможное количество работы, е? 'атом'.
Пользуясь этими величинами, Планк получил систему единиц, которую считает абсолютной и совершенно независимой от произвольных решений человека; он принимает свою систему за натуральную. Планк утверждает, что эти величины сохраняют сво? естественное значение до тех пор, пока остаются неизменными закон всемирного тяготения, скорость распространения света в вакууме и два основных принципа термодинамики; они будут одними и теми же для любых разумных существ при любых методах определения.
Однако закон всемирного тяготения и закон распространения света в вакууме - два самых слабых пункта в физике, поскольку на самом деле они являются вовсе не тем, за что их принимают. Поэтому вся система мер, предложенная Планком, весьма ненад?жна. Интересен здесь не столько результат, сколько сам принцип, т.е. признание необходимости отыскать естественные меры вещей.
Закон всемирного тяготения был сформулирован Ньютоном в его книге 'Математические принципы натуральной философии', которая вышла в Лондоне в 1687 году. Этот закон с самого начала известен в двух формулировках: научной и популярной.
Научная формулировка такова:
'Между двумя телами в пространстве наблюдаются явления, которые можно описать, предполагая, что два тела притягивают друг друга с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.'
А вот популярная формулировка:
'Два тела притягивают друг друга с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.'
Во второй формулировке совершенно забыто то, что сила притяжения представляет собой фиктивную величину, принятую лишь для удобства описания явлений. И сила притяжения считается реально существующей, как между Солнцем и Земл?й, так и между Земл?й и брошенным камнем.
(Последняя электромагнитная теория гравитационных полей догматизирует вторую точку зрения.)
Проф. Хвольсон пишет в сво?м 'Курсе физики':
'Колоссальное развитие небесной механики, полностью основанной на законе всемирного тяготения, признанного как факт, заставило уч?ных забыть чисто описательный характер этого закона и увидеть в н?м окончательную формулировку действительно существующего физического явления.'
В законе Ньютона особенно важно то, что он да?т очень простую математическую формулу, которую можно применять во всей вселенной и на основании которой с поразительной точностью вычислять любые движения, в том числе движения планет и небесных тел. Конечно, Ньютон никогда не утверждал, что он выражает факт действительного притяжения тел друг к другу; не определил он и того, почему они притягивают друг друга и посредством чего.
Каким образом Солнце может влиять на движение Земли через пустое пространство? Как вообще понимать возможность действия через пустое пространство? Закон тяготения не да?т ответа на этот вопрос, и сам Ньютон вполне это понимал. И он сам, и его современники Гюйгенс и Лейбниц предостерегали против попыток видеть в законе Ньютона решение проблемы действия через пустое пространство; для них этот закон был просто формулой для вычислений. Тем не менее, огромные достижения физики и астрономии, возможные благодаря использованию закона Ньютона, стали причиной того, что уч?ные забыли эти предостережения; и постепенно укрепилось мнение, что Ньютон открыл силу притяжения.
Хвольсон пишет в сво?м 'Курсе физики':
'Термин 'действие на расстоянии' обозначает одну из самых вредных доктрин, когда-либо возникавших в физике и тормозивших е? прогресс; эта доктрина допускает возможность мгновенного воздействия одного предмета на другой, находящийся на таком расстоянии от него, что непосредственный их контакт оказывается невозможным.
В первой половине XIX века идея действия на расстоянии господствовала в науке безраздельно. Фарадей был первым, кто указал на недопустимость воздействия какого-то тела на некоторую точку, в которой это тело не расположено, без промежуточной среды. Оставив в стороне вопрос о всемирном тяготении, он обратил особое внимание на явления электричества и магнетизма и указал на чрезвычайно важную роль в этих явлениях 'промежуточной среды', которая заполняет пространство между телами, как будто бы действующими друг на друга непосредственно.
В настоящее время убеждение о недопустимости действия на расстоянии в любой сфере физических явлений получило всеобщее признание'.
Однако старая физика смогла отбросить действие на расстоянии лишь после того, как приняла гипотезу универсальной среды, или эфира. Эта гипотеза оказалась необходимой и для теории световых и электрических явлений, как они понимались старой физикой.
В XVIII веке световые явления объяснялись гипотезой излучения, выдвинутой в 1704 году Ньютоном. Эта гипотеза предполагала, что светящиеся тела излучают во всех направлениях мельчайшие частицы особой световой субстанции, которые распространяются в пространстве с огромной скоростью и, попадая в глаз, вызывают в н?м ощущение света. В этой гипотезе Ньютон развивал идеи древних; у Платона, например, часто встречается выражение: 'свет наполнил мои глаза'.
Позднее, главным образом в XIX веке, когда внимание исследователей обратилось на те последствия световых явлений, которые невозможно объяснить гипотезой излучения, широкое распространение получила другая гипотеза, а именно, гипотеза волновых колебаний эфира. Впервые она была выдвинута голландским физиком Гюйгенсом в 1690 году, однако в течение долгого времени не принималась наукой. Впоследствии исследование дифракции вс?-таки качнуло чашу весов в пользу гипотезы световых вон и против гипотезы излучения; а последующие труды физиков в области поляризации света завоевали этой гипотезе всеобщее признание.
В волновой гипотезе световые явления объясняются по аналогии со звуковыми. Подобно тому, как звук есть результат колебаний частиц звучащего тела и распространяется благодаря колебаниям частиц воздуха или иной упругой среды, так, согласно этой гипотезе, и свет есть результат колебаний молекул светящегося тела, а его распространение происходит благодаря колебаниям чрезвычайно упругого эфира, заполняющего как межзв?здные, так и межмолекулярные пространства.
В XIX веке теория колебаний постепенно стала основанием всей физики. Электричество, магнетизм, тепло, свет, даже мышление и жизнь (правда, чисто диалектически) объяснялась с точки зрения теории колебаний. Нельзя отрицать, что для явлений света и электромагнетизма теория колебаний давала очень удобные и простые формулы для вычислений. На основе теории колебаний был сделан целый ряд блестящих открытий и изобретений.
Но для теории колебаний требовался эфир. Гипотеза об эфире возникла для объяснения самых разнородных явлений, и потому эфир приобр?л довольно странные и противоречивые свойства. Он вездесущ; он заполняет всю вселенную, пронизывает все е? точки, все атомы и межатомные пространства. Он непрерывен и обладает абсолютной упругостью; однако он настолько разреж?н, тонок и проницаем, что все земные и небесные тела проходят сквозь него, не испытывая заметного противодействия своему движению. Его разреж?нность настолько велика, что если бы эфир сгустился в жидкость, вся его масса в пределах Млечного Пути поместилась бы в одном кубическом сантиметре.
Вместе с тем, сэр Оливер Лодж считает, что плотность эфира в миллиард раз выше плотности воды. С этой точки зрения, мир оказывается состоящим из тв?рдой субстанции - 'эфира', - которая в миллионы раз плотнее алмаза; а известная нам материя, даже самая плотная, всего лишь пустое пространство, пузырьки в массе эфира.
Было предпринято немало попыток доказать существование эфира или обнаружить факты, подтверждающие его существование.
Так, допускалось, что существование эфира можно было бы установить, если бы удалось доказать, что какой-то луч света, движущийся быстрее, чем другой луч света, определ?нным образом меняет свои характеристики.
Известен следующий факт: высота звука возрастает или понижается в зависимости от того, приближается слушатель к его источнику или удаляется от него. Это так называемый принцип Доплера; теоретически его считали применимым и к свету. Он означает, что быстро приближающийся или удаляющийся предмет должен менять свой цвет - подобно тому, как гудок приближающегося или удаляющегося паровоза меняет свою высоту. Но из-за особого устройства глаза и скорости его восприятия невозможно ожидать, что глаз заметит перемену цвета, даже если она действительно имеет место.
Для установления факта изменения цвета необходимо было использовать спектроскоп, т.е. разложить луч света и наблюдать каждый цвет в отдельности. Но эти эксперименты не дали положительных результатов, так что доказать с их помощью существование эфира не удалось.
И вот, чтобы раз и навсегда решить вопрос о том, существует эфир или нет, американские уч?ные Майкельсон и Морли в середине 80-х годов прошлого столетия предприняли серию экспериментов с прибором собственного изобретения.
Прибор помещался на каменной плитке, укрепл?нной на деревянном поплавке, который вращался в сосуде со ртутью и совершал один оборот за шесть минут. Луч света из особой лампы падал на зеркала, прикрепл?нные к вращающемуся поплавку; этот свет частью проходил сквозь них, а частью ими отражался, прич?м одна половина лучей шла по направлению движения Земли, а другая - под прямым углом к нему. Это значит, что в соответствии с планом эксперимента половина луча двигалась с нормальной скоростью света, а другая половина - со скоростью света плюс скорость вращения Земли. Опять-таки согласно плана эксперимента, при соединении расщепл?нного луча должны были обнаружиться определ?нные световые феномены, возникающие вследствие различия скоростей и показывающие относительное движение между Земл?й и эфиром. Таким образом, косвенно удалось бы доказать существование эфира.
Наблюдения производились в течение длительного времени, как дн?м, так и ночью; но обнаружить какие-либо явления, подтверждающие существование эфира, так и не удалось.
С точки зрения первоначальной задачи пришлось признать, что эксперимент окончился неудачей. Однако он раскрыл другое явление (гораздо более важное, чем то, которое пытался установить), а именно: скорость света увеличить невозможно. Луч света, двигавшийся вместе с Земл?й, ничем не отличался от луча света, двигавшегося под прямым углом к движению Земли по орбите.
Пришлось признать как закон, что скорость света представляет собой постоянную и максимальную величину, увеличить которую невозможно. Это, в свою очередь, объясняло, почему к явлениям света не применим принцип Доплера. Кроме того, было установлено, что общий закон сложения скоростей, который является основой механики, к скорости света не применим.
В своей книге об относительности проф. Эйнштейн объясняет, что если мы представим себе поезд, несущийся со скоростью 30 км в секунду, т.е. со скоростью движения Земли, и луч света будет догонять или встречать его, то сложения скоростей в этом случае не произойд?т. Скорость света не возраст?т за сч?т прибавления к ней скорости поезда, и не уменьшится за сч?т вычитания из не? скорости поезда.
В то же время было установлено, что никакие существующие инструменты или средства наблюдения не могут перехватить движущийся луч. Иными словами, нельзя уловить конец луча, который ещ? не достиг своего назначения. Теоретически мы можем говорить о лучах, которые ещ? не достигли некоторого пункта; но на практике мы не способны их наблюдать. Следовательно, для нас с нашими средствами наблюдения распространение света оказывается мгновенным.
Одновременно физики, которые анализировали результаты эксперимента Майкельсона-Морли, объясняли его неудачу присутствием новых и неизвестных явлений, порожд?нных высокими скоростями.
Первые попытки разрешить этот вопрос были сделаны Лоренцом и Фицджералдом. Опыт не мог удаться, - так сформулировал свои положения Лоренц, - ибо каждое тело, движущееся в эфире, само подвергается деформации, а именно: оно сокращается в направлении движения (для наблюдателя, пребывающего в покое). Основывая свои рассуждения на фундаментальных законах механики и физики, Лоренц с помощью ряда математических построений показал, что установка Майкельсона и Морли подвергалась сокращению и размеры этого сокращения как раз таковы, чтобы уравновесить смещение световых волн, которое соответствовало их направлению в пространстве, и что это аннулировало различия в скорости двух лучей.
Выводы Лоренца о предполагаемом смещении и сокращении движущегося тела, в свою очередь, дали толчок многим объяснениям; одно из них было выдвинуто с точки зрения специального принципа относительности Эйнштейна. Но это уже область новой физики.
Старая физика была неразрывно связана с теорией колебаний.
Новой теорией, которая появилась, чтобы заменить старую теорию колебаний, стала теория корпускульного строения света и электричества, рассматриваемых как независимо существующая материя, состоящая из квантов.
Это новое учение, говорит Хвольсон, означает возвращение к теории излучений Ньютона, хотя и в значительно измен?нном варианте. Оно далеко ещ? от завершения, и важнейшая его часть, понятие кванта, до сих пор оста?тся не определ?нным. Что такое квант - этого новая физика определить не может.
Теория корпускульного строения света и электричества совершенно переменила воззрения на электричество и световые явления. Наука перестала видеть главную причину электрических явлений в особых состояниях эфира и вернулась к старой теории, согласно которой электричество - это особая субстанция, обладающая реальным существованием.
То же самое произошло и со светом. Согласно современным теориям, свет - это поток мельчайших частиц, несущихся в пространстве со скоростью 300 000 км в секунду. Это не корпускулы Ньютона, а особого рода материя-энергия, создаваемая электромагнитными вихрями.
Материальность светого потока была установлена в опытах московского профессора Лебедева. Лебедев доказал, что свет имеет вес, т.е. падая на тела, он оказывает на них механическое давление. Характерно, что, начиная свои эксперименты по определению светого давления, Лебедев исходил из теории колебаний эфира. Этот случай показывает, как старая физика сама себя опровергла.
Открытие Лебедева оказалось очень важным для астрономии; оно объяснило, например, некоторые явления, наблюдавшиеся при прохождении хвоста кометы около Солнца. Но особую важность оно приобрело для физики, поскольку предоставило новые доводы в пользу единства строения лучистой жнергии.
Невозможность доказать существование эфира, установление абсолютной и постоянной скорости света, новые теории света и электричества и, прежде всего, исследование строения атома - вс? это указывало на самые интересные линии развития новой физики.
Из этого направления физики развилась ещ? одна дисциплина новой физики, получившая название математической физики. Согласно данному ей определению, математическая физика начинается с какого-то факта, подтвержд?нного опытом и выражающего некоторую упорядоченную связь между явлениями. Она облекает эту связь в математическую форму, после чего как бы переходит в чистую математику и начинает исследовать при помощи математического анализа те следствия, которые вытекают из основных положений (Хвольсон).
Таким образом, представляется, что успех или неуспех выводов математической фидики зависит от тр?х факторов: во-первых, от правильности или неправильности определения исходного факта; во-вторых, от правильности его математического выражения; и в третьих, от точности последующего математического анализа.
'Было время, когда значение математической физики сильно преувеличивали, - пишет Хвольсон. - Ожидалось, что именно математическая физика определит приниципиальный курс в развитии физики, но этого не случилось. В выводах математической физики налицо множество существенных ошибок. Во-первых, они совпадают с результатами прямого наблюдения обычно только в первом, грубом приближении. Причина этого та, что предпосылки математической физики можно считать достаточно точными лишь в самых узких пределах; кроме того, эти предпосылки не принимают во внимание целый ряд сопутствующих обстоятельств, влиянием которых вне этих узких предпосылок нельзя пренебрегать. Поэтому выводы математической физики относятся только к идеальным случаям, которые невозможно осуществить на практике и которые зачастую очень далеки от действительности'.
И далее:
'К этому необходимо добавить, что методы математической физики позволяют решать специальные проблемы лишь в самых простых случаях. Но практическая физика не в состоянии ограничиваться такими случаями; ей то и дело приходится сталкиваться с проблемами, которые математическая физика разрешить не может. Более того, результаты выводов математической физики бывают настолько сложными, что практическое их применение оказывается невозможным.'


В дополнение к сказанному нужно упомянуть ещ? одну характерную особенность математической физики: как правило, е? выводы можно сформулировать только математически; они теряют всякий смысл, всякое значение, если попытаться истолковать их на языке фактов.
Новая физика, развившаяся из математической физики, обладает многими е? чертами. Так, теория относительности Эйнштейна является новой главой новой физики, возникшей из физики математической, но неверно отождествлять теорию относительности с новой физикой, как это делают некоторые последователи Эйнштейна. Новая физика может существовать и без теории относительности. Но с точки зрения новой модели вселенной теория относительности представляет для нас большой интерес, потому что она, помимо прочего, имеет дело с фундаментальным вопросом о форме мира.
Существует огромная литература, посвящ?нная изложению, объяснению, популяризации, критике и разработке принципов Эйнштейна; но по причине тесной связи между теорией относительности и математичнской физикой, выводы из этой теории трудно сформулировать логически. Необходимо принять во внимание и то, что ни самому Эйнштейну, ни кому-либо из его многочисленных последователей и толкователей не удалось объяснить смысл и сущность его теории ясным и понятным образом.
Одна из главных причин этого указана Бертраном Расселом в его популярной книжке 'Азбука относительности'. Он пишет, что название 'теория относительности' вводит читателей в заблуждение, что Эйнштейну приписывают тенденцию доказать, что 'вс? относительно' тогда как на самом деле он стремится открыть и установить то, что не является относительным. Было бы ещ? правильнее сказать, что Эйнштейн старается установить взаимоотношения между относительным и тем, что не является относительным.


Далее Хвольсон пишет в сво?м 'Курсе физики':
'Главное место в теории относительности Эйнштейна занимает совершенно новая и, на первый взгляд, непонятная концепция времени. Чтобы привыкнуть к ней, необходимы определ?нные усилия и продолжительная работа над собой. Но бесконечно труднее принять многочисленные следствия, вытекающие из принципа относительности и оказывающие влияние на все без исключения области физики. Многие из этих следствий явно противоречат тому, что принято (хотя и не всегда справедливо) называть 'здравым смыслом'. Некоторые такие следствия можно назвать парадоксами нового учения'.
Идеи Эйнштейна о времени можно сформулировать следующим образом:
Каждая из двух систем, движущихся друг относительно друга, имеет сво? собственное время, воспринимаемое и измеряемое наблюдателем, движущимся вместе с одной из систем.
Понятия одновременности в общем смысле не существует. Два события, которые происходят в разных системах, могут казаться одновременными наблюдателю в каком-то одном пункте, а для наблюдателя в другом пункте они могут происходить в разное время. Возможно, для первого наблюдателя одно и то же явление произойд?т раньше, а для второго - позже (Хвольсон).
Далее Хвольсон выделяет следующие из идей Эйнштейна:
Эфира не существует.
Понятие пространства, взятое в отдельности, лишено смысла. Только сосуществование пространства и времени реально.
Энергия обладает инертной массой. Энергия аналогична материи; имеет место преобразование того, что мы называем масой осязаемой материи, в массу энергии, и наоборот.
Необходимо отличать геометрическую форму тела от его кинетической формы.
Последнее положение указывает на определ?нную связь между теорией Эйнштейна и положениями Лоренца и Фицджеральда относительно сокращения движущихся тел. Эйнштейн принимает это положение, хотя говорит, что основывает его на других принципах, нежели Лоренц и Фицджералд, а именно: на специальном принципе относительности. Вместе с тем, теория относительности принимает, как необходимое основание, теорию сокращения тел, выводимую не из фактов, а из преобразований Лоренца.
Пользуясь исключительно преобразованиями Лоренца, Эйнштейн утверждает, что ж?сткий стержень, движущийся в направдении своей длины, будет короче того же стержня, пребывающего в состоянии покоя; чем быстрее движется такой стержень, тем короче он становится. Стержень, движущийся со скоростью света, утрачивает третье измерение и превращается в сво? собственное свечение.
Сам Лоренц утверждал, что, когда электрон движется со скоростью света, он исчезает.
Эти утверждения доказать невозможно, поскольку такие сжатия, если они действительно происходят, слишком незначительны при возможных для нас скоростях. Тело, которое движется со скоростью Земли, т.е. 30 км в секунду, должно, согласно расч?там Лоренца и Эйнштейна, испытывать сжатие в 1:100000 своей длины; иными словами, тело длиной в 100 м сократится на 1 мм.
Интересно отметить, что предположения о сжатии движущегося тела коренным образом противоречат установленному новой физикой принципу возрастания энергии и массы движущегося тела. Этот принцип верен, хотя вс? ещ? не разработан. Позднее будет показано, что этот принцип, смысл которого ещ? не раскрыт новой физикой, является одним из оснований для новой модели вселенной.


Переходя к фундаментальной теории Эйнштейна, изложенной им самим,мы видим, что она состоит из двух 'принципов относительности': 'специального' и 'общего'.
Предполагается, что 'специальный принцип относительности' устанавливает на основе общей закономерности возможность совместного рассмотрения фактов общей относительности движения, которые с обычной точки зрения кажутся противоречивыми; точнее, здесь имеется в виду то, что все скорости являются относительными, хотя скорость света оста?тся безотносительной, конечной и 'максимальной'. Эйнштейн находит выход из затруднений, созданных всеми этими противоречиями, во-первых, благодаря пониманию времени, согласно формуле Минковского, как воображаемой величины, выражаемой отношением данной скорости к скорости света; во-вторых, благодаря целому ряду совершенно произвольных предположений на грани физики и геометрии; в третьих, благодаря подмене прямых исследований физических явлений и их взаимоотношений чисто математическими операциями с преобоазованиями Лоренца, результаты которых, по мнению Эйнштейна, выявляют законы, управляющие физическими явлениями.
'Общий принцип относительности' вводится там, где необходимо согласовать идею бесконечности пространства-времени с законами плотности материи и законами тяготения в доступном наблюдению пространстве.
Короче говоря, 'специальный' и 'общий' принципы относительности необходимы для согласования противоречивых теорий на границе между старой и новой физикой.
Основная тенденция Эйнштейна состоит в том, чтобы рассматривать математику, геометрию и физику как одно целое.
Это, конечно, совершенно правильно: все три должны составлять одно. Но 'должны составлять' ещ? не значит, что они действительно едины. Смешение этих двух понятий и есть главный недостаток теории относительности.
В своей книге 'Теория относительности' Эйнштейн пишет: 'Пространство есть тр?хмерный континуум... Сходным образом, мир физических явлений, который Минковский кратко называет 'миром', является четыр?хмерным в пространственно-временном смысле. Ибо он состоит из отдельных событий, каждое их которых обозначается четырьмя числами, а именно: тремя пространственными координатами и временной координатой...
То, что мы не привыкли рассматривать мир как четыр?хмерный континуум, - следствие того, что до появления теории относительности время в физике играло совсем иную и более независимую роль по сравнению с пространственными координатами. Именно поэтому мы привыкли подходить ко времени как к независимому континууму. Согласно классической механике, время абсолютно, т.е. не зависит от положения и условий движения в системе координат...
Четыр?хмерный способ рассмотрения 'мира' является естественным для теории относительности, поскольку согласно этой теории, время лишено независимости'.
Но открытие Минковского, представлявшее особую важность для формального развития теории относительности, заключается не в этом. Его скорее следует усмотреть в признании Минковским того обстоятельства, что четыр?хмерный пространственно-временной континуум теории относительности в своих главных формальных свойствах демонстрирует явное родство с тр?хмерным континуумом евклидова геометрического пространства. Чтобы надлежащим образом подчеркнуть это родство, мы должны заменить обычную временную координату t мнимой величиной q - 1 ct, которая пропорциональна ей. При этих условиях естественные законы, удовлетворяющие требованиям (специальной) теории относительности, принимают математические формы, в которых временная координата играет точно такую же роль, что и пространственные координаты. Формально эти четыре координаты соответствуют пространственным координатам евклидовой геометрии'.
Формула q - 1 ct означает, что время любого события бер?тся не само по себе, а как мнимая величина по отношению к скорости света, т.е. что в предполагаемое 'метагеометрическое' выражение вводится чисто физическое понятие.
Длительность времени t умножается на скорость света c и на квадратный корень из минус единицы q - 1, который, не меняя величины, делает е? мнимой.
Это вполне ясно. Но в связи с цитированным выше отрывком необходимо отметить, что Эйнштейн рассматривает 'мир' Минковского как развитие теории относительности, тогда как на самом деле, наоборот, специальный принцип относительности построен на теории Минковского. Если предположить, что теория Минковского вытекает из принципа относительности, тогда, как и в случае теории Фицджералда и Лоренца о линейном сокращении движущихся тел, оста?тся непонятным, на какой основе построен принцип относительности.
Во всяком случае, для построения принципа относительности требуется специально разработанный материал.
В самом начале своей книги Жйнштейн пишет, что для согласования друг с другом некоторых выводов из наблюдений за физическими явлениями необходимо пересмотреть определ?нные геометрические понятия. 'Геометрия', - пишет он, - означает 'землемерие'... Как математика, так и геометрия обязаны своим происхождением потребности узнать нечто о свойствах разных вещей.' На этом основании Эйнштейн считает возможным 'дополнить геометрию', заменив, например, понятие прямых линий понятием ж?стких стержней. Ж?сткие стержни подвергаются изменениям под влиянием температуры, давления и т.п.; они могут расширяться и сокращаться. Вс? это, разумеется, должно значительно изменить 'геометрию'.
Дополненная таким образом геометрия, - пишет Эйнштейн, - очевидно, становится естественной наукой; и е? надо считать отраслью физики'.
Я придаю особую важность изложенному здесь взгляду на геометрию, потому что без этого было бы невозможно построить теорию относительности...
Евклидову геометрию необходимо отбросить.'
Следующий важный пункт теории Эйнштейна - оправдание применяемого математического метода.
'Опыт прив?л к убеждению, - говорит он, - что, с одной стороны, принцип относительности (в ограниченном понимании) является правильным, а с другой стороны, скорость распространения света в пустоте следует считать постоянной величиной.'
Согласно Эйнштейну, сочетание этих двух положений обеспечивает закон преобразований для четыр?х координат, определяющих время и место события.
Он пишет:
'Каждый общий закон природы должен быть сформулирован таким образом, чтобы его можно было преобразовать в совершенно одинаковый по форме закон, где вместо пространственно-временных переменных первоначальной системы координат введены пространственно-временные переменные другой системы координат. В этой связи, математические соотношения между величинами первого порядка и величинами второго порядка даются преобразованиями Лоренца. Или кратко: общие законы природы коварианты относительно преобразований Лоренца.'
Утверждение Эйнштейна о ковариантности законов природы относительно преобразований Лоренца - наиболее ясная иллюстрация его позиции. Начиная с этого момента, он полагает возможным приписывать явлениям те же изменения, которые находит в преобразованиях. Это как раз тот самый метод математической физики, который давно уже осужд?н и который упоминал Хвольсон в цитированном выше отрывке.
В 'Теории относительности' есть глава под названием 'Опыт и специальная теория относительности.'
'В какой мере специальная теория относительности подкрепляется опытом? Нелегко ответить на этот вопрос, - пишет Эйнштейн. - Специальная теория относительности выкристаллизовалась из теории электромагнитных явлений Максвелла-Лоренца. Таким образом, все факты опыта, которые подтверждают электромагнитную теорию, подтверждают также и теорию относительности.'
Эйнштейн с особой остротой чувствует, как необходимы ему факты, чтобы поставить свою теорию на прочную основу. Но факты уда?тся найти только в области невидимых величин - ионов и электронов.
Он пишет:
'Классической механике необходимо было измениться, прежде чем она смогла стать на один уровень со специальной теорией относительности. Однако в главной своей части эти изменения относятся лишь к законам больших скоростей, когда скорости движения материальных частиц не слишком малы по сравнению со скоростью света. Мы имеем опыт таких скоростей только в случае электронов и ионов, для других случаев движения, являющихся вариациями законов классической механики, изменения величин слишком малы, чтобы их удалось точно определить на практике.'
Переходя к общей теории относительности, Эйнштейн пишет:
'Классический принцип относительности для ир?хмерного пространства с временной координатой t (реальная величина) нарушается фактом постоянной скорости света.'
Но этот факт постоянной скорости света нарушается искривлением светого луча в гравитационных полях, что, в свою очередь, требует новой теории относительности и пространства, определяемого гауссовой системой координат для неевклидова континуума.
Гауссова система координат отличается от декартовой тем, что е? можно применить к пространству любого рода независимо от его свойств. Она автоматически приспосабливается к любому пространству, в то время как декартова система координат требует пространства с определ?нными свойствами, т.е. геометрического пространства.
Продолжая сравнение специальной и общей теорий относительности, Эйнштейн пишет:
'Специальная теория относительности применяется в тех областях, где не существует гравитационного поля. В этой связи, примером является тв?рдое тело-эталон в состоянии движения, т.е. тв?рдое тело, движение которого выбрано таким образом, что к нему применимо положение об однородном прямолинейном движении 'изолированных' материальных точек.'
Чтобы сделать ясными принципы общей теории относительности, Эйнштейн сравнивает сферу пространства-времени с диском, который равномерно вращается вокруг центра в собственной плоскости. Наблюдатель, находящийся на этом диске, считает, что диск 'пребывает а покое'; а силу, действующую на него и вообще на все тела, покоящиеся относительно диска, он принимает за силу гравитационного поля.
'Этот наблюдатель, находясь на сво?м диске, проводит опыты с часами и измерительными стержнями. Проводя эти опыты, он намерен получить точные данные о времени и пространстве в пределах своего диска.
Для начала он помещает одни из двух одинаково устроенных часов в центре диска, а другие - на его краю, так что и те, и другие находятся относительно диска в покое...
Таким образом, на нашем диске, или, в более общем случае, в любом гравитационном поле, часы в зависимости от своего местоположения будут, пребывая в 'покое', отставать или спешить. По этой причине правильное определение времени при помощи часов, пребывающих в покое относительно некоторого эталона, оказывается невозможным. Сходная трудность возникает, если мы попытаемся применить в этом случае традиционное определение одновременности...
Определение пространственных координат также представляет собой непреодолимые трудности. Если наблюдатель, движущийся вместе с диском, пользуется своим стандартным измерительным стержнем (достаточно коротким по сравнению с длиной радиуса диска), располагая его по касательной к краю диска, тогда... длина этого стержня окажется меньше действительной, поскольку движущиеся тела укорачиваются в направлении движения. Наоборот, измерительный стержень, который расположен на диске в радиальном направлении, не укоротится.
По этой причине употребляют не тв?рдые, а упругие эталоны, которые не только движутся в любом направлении, но и во время движения в разной степени меняют свою форму. Для определения времени служат часы, закон движения которых может быть любым, даже неправильным. Нам нужно представить себе, что каждые из часов укреплены в какой-то точке на нетв?рдом, упругом эталоне. Часы удовлетворяют только одному условию, а именно: 'показания', которые наблюдаются одновременно на соседних часах (в данном пространстве), отличаются друг от друга на бесконечно малые промежутки времени. Такой нетв?рдый, упругий эталон, который с полным основанием можно назвать 'эталонным моллюском', в принципе эквивалентен произвольно взятой четыр?хмерной гауссовой системе координат. Этому 'моллюску' некоторую удобопонятность по сравнению с гауссовой системой прида?т (фактически неоправданное) формальное сохранение отдельных пространственно-временных координат в противоположность временной координате. Любая точка 'моллюска' уподобляется пространственной точке, и любая материальная точка, находящаяся в покое относительно него, уподобляется покоящейся, пока 'моллюска' рассматривают в качестве эталона. Общий принцип относительности настаивает, что всех таких 'моллюсков' можно с равным правом и одинаковым успехом использовать в качестве эталонов при формулировках основных законов природы; сами же законы должны быть совершенно независимы от выбора 'моллюска'...'
Касаясь фундаментального вопроса о форме мира, Эйнштейн пишет:
'Если поразмыслить над вопросом о том, в каком виде следует представлять себе вселенную как целое, то первым ответом напрашивается следующий: что касается протсранства и времени, то вселенная бесконечна. Везде есть зв?зды, так что плотность материи, хотя местами и самая разнообразная, в среднем оста?тся одной и той же. Иными словами, как бы далеко мы ни удалились в пространстве, повсюду мы встретим разреж?нные скопления неподвижных зв?зд примерно одного типа и плотности...
Эта точка зрения не гармонирует с теорией Ньютона. Последняя в какой-то мере требует, чтобы вселенная имела своего рода центр, где плотность зв?зд была бы максимальной; по мере того, как мы удаляемся от этого центра, групповая плотность зв?зд будет уменьшаться, пока наконец на больших расстояниях не сменится безграничной областью пустоты. Зв?здная вселенная по Ньютону должна быть конечным островком в бесконечной пучине пространства...
Причина невозможности неограниченной вселенной, согласно теории Ньютона, состоит в том, что интенсивность гравитационного поля на поверхности сферы, заполненной материей даже очень малой плотности, будет возрастать с увеличением радиуса сферы и в конце концов станет бесконечно большой, что невозможно...
Развитие неевклидовой геометрии привело к признанию того, что можно отбросить всякие сомнения в бесконечности нашего пространства, не приходя при этом в конфликт с законами мышления или опыта.'
Признавая возможность подобных выводов, Эйнштейн описывает мир двухмерных существ на сферической поверхности:
В противоположность нашей вселенная этих существ двухмерна; как и наша, она распространяется до бесконечности...'
Поверхность мира двухмерных существ составляет 'пространство'. Это пространство обладает весьма необычными свойствами. Если бы существа, живущие на сферической поверхности, стали проводить в сво?м 'пространстве' круги, т.е. описывать их на поверхности своей сферы, эти круги возрастали бы до некоторого предела, а затем стали бы уменьшаться.
'Вселенная таких существ конечна, но не имеет границ.'
Эйнштейн приходит к заключению, что существа сферической поверхности сумели бы установить, что живут на сфере, и, возможно, определить радиус этой сферы, если бы им удалось исследовать достаточно большую часть пространства, т.е. своей поверхности.
'Но если эта часть окажется очень малой, они не смогут найти наглядных доказательств того, что живут на поверхности сферического 'мира', а не на евклидовой плоскости; малая часть сферической поверхности лишь незначительно отличается от части плоскости такой же величины...
Итак, если бы существа сферической поверхности жили на планете, солнечная система которой занимает ничтожно малую часть сферической вселенной, они не смогли бы определить, где они живут: в конечной или в бесконечной вселенной, поскольку та 'часть вселенной', к которой они имеют доступ, в обоих случаях окажется практически евклидовой плоскостью...
Для двухмерной вселенной существует и тр?хмерная аналогия, а именно: тр?хмерное сферическое пространство, открытое Риманом. Оно обладает конечным объ?мом, определяемым его 'радиусом'...
Легко видеть, что такое тр?хмерное сферическое пространство аналогично двухмерному сферическому пространству. Оно конечно, т.е. обладает конечным объ?мом, и не имеет границ.
Можно упомянуть ещ? об искривленном пространстве другого рода - об 'эллиптическом пространстве', рассматривая его как некоторое искривл?нное пространство... Эллиптическую вселенную допустимо, таким образом, считать искривл?нной вселенной, обладающей центральной симметрией.
Из сказанного следует, что уда?тся представить себе замкнутое пространство без границ. Среди примеров такого пространства сферическое (и эллиптическое) - самое простое, поскольку все его точки эквивалентны. Как результат подобного обсуждения, возникает наиболее интересный вопрос для астрономов и физиков: бесконечна ли вселенная, в которой мы жив?м, или она конечна по типу сферической вселенной? Наш опыт далеко не достаточен, чтобы дать нам ответ на этот вопрос. Но общая теория относительности позволяет ответить на него с известной степенью определ?нности; и в этой связи упомянутое ранее затруднение (с точки зрения ньютоновской теории) находит сво? разрешение...'
Структура пространства, согласно общей теории относительности, отличается от общепризнанной.
'В соответствии с общей теорией относительности геометрические свойства пространства не являются независимыми; они определяются материей. Таким образом, выводы о геометрической структуре материи можно сделать только в том случае, если основывать свои соображения на состоянии материи, как на ч?м-то нам известном. Из опыта мы знаем, что... скорости зв?зд малы по сравнению со скоростью распространения света. Благодаря этому мы можем очень приблизительно прийти к выводу о природе вселенной в целом, если рассматривать материю как пребывающую в состоянии покоя...
Мы могли бы представить себе, что с точки зрения геометрии наша вселенная вед?т себя наподобие поверхности, которая в отдельных частях неравномерно искривлена, но нигде явно не отклоняется от плоскости; это нечто вроде поверхности озера, покрытого рябью. Такую вселенную можно назвать квази-евклидовой вселенной. Что касается е? пространства, то оно будет бесконечным. Но расч?т показывает, что в квази-евклидовой вселенной средняя плотность материи неизбежно будет равна нулю.
Если нам нужна во вселенной средняя плотность материи, которая хотя бы на малую величину отличается от нулевой, такая вселенная не может быть квази-евклидовой. Наоборот, результаты расч?тов показывают, что, если материя равномерно распределена во вселенной, такая вселенная непременно будет сферической или эллиптической. Поскольку в действительности распределение материи неоднородно, подлинная вселенная в отдельных своих частях будет отличаться от сферической. Но она непременно будет конечной. Действительно, теория показывает нам простую связь между протяж?нностью пространства вселенной и средней плотностью материи.'
Последнее положение несколько по-иному рассматривается Э.С. Эддингтоном в его книге 'Пространство, время и тяготение':
После массы и энергии есть одна физическая величина, которая играет в современной физике очень важную роль - это действие (определяемое как произведение энергии на время).
В данном случае действие - просто технический термин, и его не следует путать с 'действием и противодействием' Ньютона. В особенности же важным оно представляется в теории относительности. Причину увидеть нетрудно. Если мы желаем говорить о непрерывной материи, которая присутствует в любой точке пространства и времени, нам прид?тся употребить термин плотность. А плотность, помноженная на объ?м, да?т массу, или, что то же самое, энергию. Но с нашей пространственно-временной точки зрения куда более важным является произведение плотности на четыр?хмерный объ?м пространства и времени; это действие. Умножение на три измерения да?т массу, или энергию; а четв?ртое умножение - их произведение на время.
Действие есть кривизна мира. Едва ли удастся наглядно представить себе это утверждение, потому что наше понятие о кривизне проистекает из двухмерной поверхности в тр?хмерном пространстве, а это да?т слишком ограниченную идею возможностей четыр?хмерной поверхности в пространстве пяти и более измерений. В двух измерениях существует лишь одна полная кривизна, и если она исчезнет, поверхность будет плоской или е?, по крайней мере, можно развернуть в плоскость...
Повсюду, где существует материя, существует и действие, а потому и кривизна; интересно отметить, что в обычной материи кривизна пространственно-временного мира отнюдь не является незначительной. Например, кривизна воды обычной плотности такова же, как и у пространства сферической формы радиусом в 570 млн. км. Результат ещ? более удивителен, если выразить его в единицах времени; этот радиус составляет около половины светового часа. Трудно по-настоящему описать, что это значит; по крайней мере, можно предвидеть, что шар радиусом в 570 млн. км обладает удивительными свойствами. Вероятно, должна существовать верхняя граница возможного размера такого шара. Насколько я могу себе представить, гомогенная масса воды, приближающаяся к этому размеру, может существовать. У не? не будет центра, не будет границ, и каждая е? точка будет находиться в том же положении по отношению к общей массе, что и любая другая е? точка, - как точка на поверхности сферы по отношению к поверхности. Любой луч света, пройдя в ней час или два, верн?тся к исходному пункту. Ничто не сможет проникнуть в эту массу или покинуть е? пределы; фактически она сопротяж?нна с пространством. Нигде в другом месте не может быть иного мира, потому что 'другого места' там нет'.
Изложение теорий новой физики, стоящих особняком от 'теории относительности' заняло бы слишком много времени. Изучение природы света и электричества, исследование атома (теории Бора) и особенно электрона (квантовая теория) направили физику по совершенно новому пути; если физика действительно сумеет освободиться от упомянутых выше препятствий, мешающих е? прогрессу, а также от излишне парадоксальных теорий относительности, она обнаружит когда-нибудь, что знает об истинной природе вещей гораздо больше, чем можно было бы предположить.


Старая физика

Геометрическое понимание пространства, т.е. рассмотрение его отдельно от времени. Понимание пространства как пустоты, в которой могут находиться или не находиться 'тела'.
Одно время для всего что существует. Время, измеряемое одной шкалой.
Принцип Аристотеля - принцип постоянства и единства законов во вселенной, и, как следствие этого закона, доверие к незыблемости установленных явлений.
Элементарное понимание мер, измеримости и несоизмеримости. Меры для всех вещей, взятые извне.
Признание целого ряда понятий, трудных для определения (таких как время, скорость и т.д.), первичными понятиями, не требующими определения.
Закон тяготения, или притяжения, распространение этого закона на явление падения тел, или тяжести.
'Вселенная летающих шаров' - в небесном пространстве и внутри атома.
Теории колебаний, волновых движений и т.п.
Тенденция объяснять все явления лучистой энергии волновыми колебаниями.
Необходимость гипотезы 'эфира' в той или иной форме. 'Эфир' как субстанция величайшей плотности, - и 'эфир' как субстанция величайшей разряж?нности.


Новая физика

Попытки уйти от тр?хмерного пространства при помощи математики и метагеометрии. Четыре координаты.
Исследование структуры материи и лучистой энергии. Исследование атома. Открытие электрона.
Признание скорости света предельной скоростью. Скорость света как универсальная константа.
Определение четв?ртой координаты в связи со скоростью света. Время как мнимая величина и формула Минковского. Признание необходимости рассмотрения времени вместе с пространством. Пространственно-временной четыр?хмерный континуум.
Новые идеи в механике. Признание возможности того, что принцип сохранения энергии неверен. Признание возможности превращения материи в энергию и обратно.
Попытки построения системы абсолютных единиц измерений.
Установление факта весомости света и материальности электричества.
Принцип возрастания энергии и массы тела во время движения.
Специальный и общий принципы относительности; идея необходимости конечного пространства в связи с законами тяготения и распределения материи во вселенной.
Кривизна пространственно-временного континуума. Безграничная, но конечная вселенная. Измерения этой вселенной определяются плотностью составляющей е? материи. Сферическое или эллиптическое пространство.
'Упругое' пространство.
Новые теории структуры атома. Исследование электрона. Квантовая теория. Исследование структуры лучистой энергии.


II


Теперь, когда мы рассмотрели принципиальные особенности как 'старой', так и 'новой' физики, можно задать себе вопрос: сумеем ли мы на основе того материала, которым располагаем, предсказать направление будущего развития физической науки и построить на этом предсказании модель вселенной, отдельные части которой не будут взаимно противоречить и разрушать друг друга? Ответ таков: построить такую модель было бы нетрудно, если бы мы располагали всеми необходимыми и доступными нам данными о вселенной, в связи с чем возникает новый вопрос: имеем ли мы все эти необходимые данные? И на него, несомненно, следует ответить: нет, не имеем. Наши данные о вселенной недостоверны и неполны. В 'геометрической' тр?хмерной вселенной это совершенно ясно: мир невозможно вместить в систему тр?х координат. Вне е? окажутся слишком многие вещи, измерить которые невозможно. Равным образом, ясно это и относительно 'метагеометрической' вселенной четыр?х координат. Мир во вс?м его многообразии не вмещается в четыр?хмерное пространство, какую бы четв?ртую координату мы ни выбирали: аналогичную первым тр?м или воображаемую величину, определяемую относительно предельной физической скорости, т.е. скорости света.
Доказательством искусственности четыр?хмерного мира в новой физике является, прежде всего, крайняя сложность его конструкции, которая требует искривл?нного пространства. Очевидно, что кривизна пространства указывает на присутствие в н?м ещ? одного или нескольких измерений.
Вселенная четыр?х измерений, или четыр?х координат, так же неудовлетворительна, как тр?х. Можно сказать, что мы не обладаем всеми данными, необходимыми для построения вселенной, поскольку ни три координаты старой физики, ни четыре координаты новой не достаточны для описания всего многообразия явлений во вселенной.
Вообразим, что кто-то строит модель дома, имея всего три его элемента: пол, одну стену и крышу. Такова модель, которая соответствует тр?хмерной модели вселенной. Она даст общее представление о доме, но при условии, что ни сама модель, ни наблюдатель не будут двигаться; малейшее движение разрушит иллюзию.
Четыр?хмерная модель вселенной новой физики представляет собой ту же самую модель, но устроенную так, что она вращается, постоянно поворачиваясь к наблюдателю фасадом. Это может на некоторое время продлить иллюзию, но лишь при условии, что имеется не более одного наблюдателя. Два человека, наблюдающие такую модель с разных сторон, вскоре увидят, в ч?м заключается хитрость.
Прежде чем выяснять вне всяких аналогий, что в действительности означают слова 'вселенная не укладывается в тр?хмерное и четыр?хмерное пространство', прежде чем устанавливать, какое число координат определяет вселенную, необходимо устранить одно из самых серь?зных проявлений непонимания по отношению к измерениям.
Иначе говоря, я вынужден повторить, что к исследованию измерений пространства или пространства-времени нельзя подходить математически. И те математики, которые утверждают, что вся проблема четв?ртого измерения в философии, психологии, мистике и т.д. возникла потому, что 'кто-то подслушал разговор между двумя математиками о предметах, которые понимают только они', совершеают большую ошибку; является ли эта ошибка преднамеренной или нет - лучше знать им самим.
Математика потому так легко и просто отрывается от тр?хмерной физики и евклидовой геометрии, что в действительности вовсе им не не принадлежит.
Неверно думать, будто все математические отношения должны иметь физический или геометрический смысл. Наоборот, лишь очень небольшая и самая элементарная часть математики постоянно связана с геометрией и физикой, лишь очень немногие геометрические и физические величины имеют постоянное математическое выражение.
Нам необходимо понять, что измерения невозможно выразить математически, и, следовательно, математика не может служить инструментом исследования проблемы времени и пространства. Математически можно выразить только измерения, производимые по заранее согласованным координатам. Можно, например, сказать, что длина объекта - пять метров, ширина - десять, а высота - пятнадцать. Но различие между самими по себе длиной, шириной и высотой выразить невозможно: математически они эквивалентны. Математика не ощущает измерений, как ощущают их физика и геометрия. Математика не в состоянии уловить различие между точкой, линией, поверхностью и телом. Точка, линия, поверхность и тело могут быть выражены математически при помощи степеней, иными словами, просто обозначены: допустим, a обозначает линию, a2 - поверхность, a3 - тело. Но дело в том, что такие же обозначения годятся и для обозначения отрезков разной длины: a = 10 м, a2 = 100 м, a3 = 1000 м.
Искусственный характер обозначений измерений степенями становится особенно очевидным при следующем рассуждении.
Допустим, что a - это отрезок, a2 - квадрат, a3 - куб, a4 - тело четыр?х измерений; как будет видно позднее, можно дать объяснение понятиям a5 и a6. Но что в таком случае обозначают a25, или a1000? Если мы предположим, что измерения соответствуют степеням, значит, показатели степени действительно выражают измерения. Следовательно, число измерений должно быть таким же, как число, выражающее степень; а это явная нелепость, поскольку ограниченность вселенной по отношению к числу измерений вполне очевидна; и никто не станет утверждать всерь?з о существовании бесконечного или даже очень большого числа измерений.
Установив это факт, мы можем ещ? раз отметить, хотя это уже вполне ясно, что тр?х координат для описания вселенной недостаточно, потому что такая вселенная не будет содержать движения; или, иначе говоря, любое доступное наблюдению движение немедленно е? разрушит.
Четв?ртая координата принимает в расч?т время; пространство отдельно более не рассматривается. Четыр?хмерный пространственно-временной континуум открывает возможность движения.
Но само по себе движение представляет собой очень странное явление. При первом же подходе к нему мы встречаемся с интересным фактом. Движение содержит в себе самом три явно выраженных измерения: длительность, скорость и 'направление'. Но это направление находится не в евклидовом пространстве, как предполагала старая физика; это направление от 'до' к 'после', которое для нас никогда не исчезает и никогда не меняется.
Время есть мера движения. Если изобразить время в виде линии, тогда единственной линией, которая удовлетворит всем требованиям времени, будет спираль. Спираль - это, так сказать, 'тр?хмерная линия', т.е. линия, которая требует для своего построения тр?х координат.
Тр?хмерность времени совершенно аналогична тр?хмерности пространства. Мы не измеряем пространства кубами; мы измеряем его линейно в разных направлениях; точно так же поступаем мы и со временем, хотя внутри времени можем измерить только две координаты из тр?х, а именно: продолжительность и скорость. Направление времени для нас не величина, а абсолютное условие. Другое отличие заключается в том, что относительно пространства мы понимаем, что имеем дело с тр?хмерным континуумом, а по отношению ко времени этого не понимаем. Но, как уже было сказано, если попытаться соединить три координаты в одно целое, мы получим спираль.
Это сразу же объясняет, почему 'четв?ртая координата' для описания времени недостаточна. Хотя мы допускаем, что оно представляет собой кривую линию, е? кривизна становится неопредел?нной. Только три коорлинаты, или 'тр?хмерная линия', т.е. спираль, дают адекватное описание времени.
Тр?хмерность времени объясняет многие явления, которые до сих пор оставались непонятными, и делает ненужной большую часть разработанных гипотез и предположений, необходимых для того, чтобы втиснуть вселенную в границы тр?х- или даже четыр?хмерного континуума.
Тр?хмерность времени объясняет также, почему 'теории относительности' не уда?тся придать своим построениям удобопонятную форму. В любой конструкции чрезмерная сложность представляет собой результат каких-то упущений или ошибочных предпосылок. В данном случае причина сложности проистекает из упомянутой выше невозможности вместить вселенную в пределы тр?хмерного или четыр?хмерного континуума. Если мы попытаемся рассмотреть 'тр?хмерное пространство как двухмерное и объяснить все физические явления как происходящие на его поверхности, нам потребуется ещ? несколько новых 'принципов относительности'.
Три измерения времени можно считать продолжением измерений пространства, т.е. 'четв?ртым', 'пятым' и 'шестым' измерениями пространства. 'Шестимерное' пространство - это, несомненно, 'евклидов континуум', но с такими свойствами и формами, которые нам совершенно непонятны. Шестимерная форма тела нами непостижима, и если бы мы могли воспринимать е? нашими органами чувств, то, конечно, увидели бы е? и ощутили как тр?хмерную. Тр?хмерность есть функция наших внешних чувств. Время представляет собой границу этих чувств. Шестимерное пространство - это реальность, мир, каков он есть. Эту реальность мы воспринимаем сквозь узкую щель внешних чувств, главным образом, прикосновением и зрением; мы да?м ей определение 'тр?хмерного пространства' и приписываем свойства евклидова континуума. Любое шестимерное тело становится для нас тр?хмерным телом, существующим во времени; и свойства пятого и шестого измерений остаются нашему восприятию недоступными.
Шесть измерений образуют 'период', за пределами которого не оста?тся ничего, кроме повторения этого же периода, но в другом масштабе. Период измерений ограничен с одного конца точкой, а с другого - бесконечностью пространства, умноженной на бесконечность времени, что в древнем символизме изображалось двумя пересекающимися треугольниками, или шестиконечной звездой.
Совершенно так же, как в пространстве одно измерение, линия, и два измерения, поверхность, не могут существовать сами по себе и, взятые в отдельности, суть не более чем воображаемые фигуры, тогда как реально существует только тело, так и во времени реально существует лишь тр?хмерное тело времени.
Несмотря на то, что в геометрии сч?т измерений начинается с линии, только точка и тело являются, в подлинно физическом смысле, существующими объектами. Линии и поверхности суть лишь черты и свойства тела. Их можно рассматривать и по-другому: линию как траекторию движения точки в пространстве, а плоскость - как траекторию движения линии в перпендикулярном ей направлении (или как е? вращение).
То же самое относится и к телу времени. Только точка (мгновение) и тело реальны. Мгновение может меняться, т.е. сокращаться и исчезать или расширяться и становиться телом. Тело также способно сокращаться и становиться точкой или расширяться и становиться бесконечностью.
Число измерений не может быть ни бесконечным, ни очень большим; оно не превышает шести. Причина этого кроется в свойстве шестого измерения, которое включает в себя все возможности в данном масштабе.
Чтобы понять это, необходимо рассмотреть содержание тр?х измерений времени, взятых в их 'пространственном' смысле, т.е. как четв?ртое, пятое и шестое измерения пространства.
Если принять тр?хмерное тело за точку, линия существования или движения этой точки будет линией четв?ртого измерения.
Возьм?м линию времени, как мы обычно его себе представляем.
ПреждеТеперьПосле
|||

Эта линия, определяемая точками 'прежде', 'теперь' и 'после', есть линия четв?ртого измерения.
Вообразим теперь несколько линий, пересекающих линию 'прежде-теперь-после' и перпендикулярных ей. Эти линии, каждая из которых обозначает 'теперь' для данного момента, выразят вечное существование прошлого и возможность будущих мгновений.
Каждая из этих перпендикулярных линий представляет собой 'вечное теперь' для какого-то момента, и у каждого момента есть такая линия вечного теперь.
Это и есть пятое измерение.
Пятое измерение образует поверхность по отношению к линии времени.
Вс?, что мы знаем, вс?, что призна?м существующим, лежит на линии четв?ртого измерения; линия четв?ртого измерения есть 'историческое время' нашего существования. Это единственное время, которое мы знаем, единственное время, которое мы чувствуем и призна?м. Но, хотя и незаметно, ощущение других 'врем?н', как параллельных, так и перпендикулярных, постоянно вторгается в наше сознание. Эти параллельные 'времена' совершенно аналогичны нашему времени и тоже состоят из 'прежде-теперь-после', образуя основу ткани врем?н, тогда как перпендикулярные времена состоят только из 'теперь' и образуют уток.
Но каждое мгновение 'теперь' на линии времени, т.е. на одной из параллельных линий, содержит не одну, а несколько возможностей; иногда их число велико, иногда же мало. Вообще число возможностей, содержащихся в каждом мгновении, должно быть ограниченным, поскольку, не будь оно ограниченным, не существовало бы ничего невозможного. Таким образом, каждый момент времени, в пределах некоторых ограниченных условий бытия или физического существования, содержит определ?нное количество возможностей и бесконечное число невозможных случаев. Но и невозможные случаи также могут быть различными. Если я иду по знакомому ржаному полю и внезапно вижу на н?м большую бер?зу, которой вчера там не было, это будет невозможным явлением (как раз тем 'материальным чудом', которое не допускается принципом Аристотеля). Но если я иду по этому полю и вижу посреди него кокосовую пальму, это будет невозможным явлением другого рода, тоже 'материальным чудом', но более высокого, более трудного порядка. Следует иметь в виду это различие между невозможными случаями.
Передо мной на столе лежит множество разных предметов. Я могу воспользоваться ими по-разному. Но я не могу взять со стола что-такое, чего там нет, - например, апельсин, которого там нет, или, скажем, пирамиду Хеопса или Исакиевский собор. Кажется, что в этом отношении между апельсином и пирамидой нет никакой разницы, однако она существует. Апельсин в принципе мог бы лежать на столе, а пирамида не могла бы. Как ни элементарны эти рассуждения, они показывают существование разных степеней невозможного.
Но сейчас нас интересуют только возможности. Как я уже упоминал, каждое мгновение содержит определ?нное число возможностей. Я могу осуществить одну из сушествующих возможностей, т.е. могу что-то сделать, а могу ничего и не делать. Но как бы я ни поступил, иначе говоря, какая бы из возможностей данного мгновения ни осуществилась, е? осуществление предопределит следующее мгновение времени, следующее 'теперь'. Это второе мгновение времени снова будет содержать некоторое число возможностей, и осуществление одной из них предопределит следующее мгновение времени, следующее 'теперь'.
Таким образом, линию направления времени можно определить как линию осуществления одной возможности из числа всех возможностей, заключавшихся в предыдущей точке.
Линия такого осуществления будет линией четв?ртого измерения, линией времени. Зрительно мы представляем е? себе в виде прямой линии; но правильнее было бы представить е? в зигзагообразном виде.
Вечное существование этого осуществления, линия, перпендикулярная линии времени, будет линией пятого измерения, или линией вечности.
Для современного ума вечность - неопредел?нное понятие. В разговорном языке вечность принимают за неограниченную протяж?нность времени. Но религиозное и философское мышление вкладывает в понятие вечности идеи, которые отличают е? от простой бесконечной протяж?нности. Яснее всего это видно в индийской философии с е? идеей 'Вечного Теперь' как состояния Брахмы.
Фактически понятие вечности по отношению ко времени - то же самое, что понятие поверхности по отношению к линии. Бесконечность для линии не обязательно должна быть линией, не имеющей конца; это может быть и поверхность, т.е. бесконечное число отрезков.
Вечность может быть бесконечным числом конечных 'врем?н'.
Для нас трудно, думая о времени, представлять его во множественном числе. Наша мысль чересчур привыкла к идее одного времени, и хотя в теории идея множественности 'врем?н' уже принята новой физикой, на практике мы продолжаем думать о времени, которое повсюду и везде одно и то же.
Что же будет шестым измерением?
Шестым измерением будет линия осуществления возможностей, которые содержались в предыдущем мгновении, но не были осуществлены во 'времени', т.е. в четв?ртом измерении. В каждое мгновение в каждой точке тр?хмерного мира существует определ?нное число возможностей; во 'времени', в четв?ртом измерении, осуществляется одна из них; эти осуществл?нные возможности слагают одна за другой пятое измерение. Линия времени, бесконечно повторяющаяся в вечности, оставляет в каждой точке неосуществл?нные возможности. Но эти возможности, не осуществившиеся в одном времени, осуществляются в шестом измерении, которое представляет собой совокупность 'всех врем?н'. Линии пятого измерения, перпендикулярные линии 'времени', образуют поверхность; линии шестого измерения, начинающиеся из каждой точки 'времени' и идущие во всевозможных направлениях, образуют тело, или тр?хмерный континуум времени, в котором нам известно только одно измерение. По отношению ко времени мы оста?мся одномерными существами и поэтому не видим параллельного времени или параллельных врем?н; по этой же причине мы не видим углов и поворотов времени, а представляем себе время прямой линией.
До сих пор мы принимали все линии четв?ртого, пятого и шестого измерений за прямые, за координатные оси. Но нам следует понять, что эти прямые невозможно считать реально существующими. Они представляют собой лишь воображаемую систему координат для построения спирали.
Вообще говоря, реальное существование прямых линий вне некоторой определ?нной шкалы и определ?нных условий невозможно ни установить, ни доказать. И даже эти 'условные прямые линии' перестают быть прямолинейно направленными, если мы вообразим их на вращающемся теле, которое совершает к тому же целый ряд разнообразных движений. По отношению к пространственным линиям это совершенно ясно: прямые линии суть не что иное, как воображаемые координаты, которые служат для измерения длины, ширины и высоты, вернее, глубины спирали. А линии времени геометрически ничем не отличаются от линий пространства. Единственное их отличие состоит в том, что в пространстве мы знаем три измерения и способны установить спиральный характер всех космических движений, т.е. таких движений, которые мы рассматриваем в достаточно крупном масштабе. Но мы не осмеливаемся на это, когда речь ид?т о 'времени'. Мы стараемся вместить вс? пространство времени в одну линию большего времени, общего для всех и вся. А это иллюзия: нет 'времени вообще', каждое отдельно существующее тело, каждая 'отдельная система' (или то, что принято в качестве таковой) имеет сво? собственное время. Это признано и новой физикой. Однако новая физика не объясняет смысла этого понятия, не объясняет, что значит 'отдельное существование'.