вотное погибнет из-за недостаточности системы защиты. И все же организм нередко дорого платит за свою способность защищаться путем приспособления. Большая группа болезней, так называемых болезней адаптации, возникает именно в условиях стресса. Почему? Рассмотрим классический пример встречи кошки с собакой, проанализированный с физиологической точки зрения еще Уолтером Кенноном -- создателем учения о гомеостазе. Дополним этот пример описанием стрессорной реакции в духе Ганса Селье, но включим сюда некоторые дополнительные детали, выясненные многочисленными исследователями стресса в дальнейшем, после основополагающих работ Ганса Селье. Наконец, введем в описание этой картины важный элемент -- повышение гипоталамического порога чувствительности, которого ни Г. Селье, ни другие исследователи стрессорной реакции не увидели. А между тем без повышения гипоталамического порога не могла бы быть осуществлена сколько-нибудь длительная стрессорная реакция. Правда, в этом случае и плата организма за адаптацию не была бы столь высокой. Итак, собака и кошка заметили друг друга. Органы чувств уже на расстоянии дают сигнал в центральную нервную систему о том, что противник близко. Возможно, предстоит борьба, и поэтому к ней необходима подготовка. Ситуация оценивается корой головного мозга, но сама окраска оценки эмоциональна. Именно эмоция является одним из сильнейших мобилизующих факторов. Регуляция эмоций в значительной мере сосредоточена в гипоталамусе. Когда кошка принимает свою характерную позу с выгнутой спиной, это означает, что информация, полученная из коры головного мозга, возбудила эмоции страха и агрессии в гипоталамусе. Это фаза подготовки к борьбе. Сама эмоциональная поза животного приводит тело в состояние готовности к немедленному движению. Одновременно гипоталамус посылает сигналы к вегетативной нервной системе -- тому ее отделу, который "ведает" функцией внутренних органов. Такой сигнал в доли секунды поступает в надпочечники, и они выбрасывают свой гормон -- адреналин. Это легко заметить со стороны: адреналин вызывает сокращение специальных мышц кожи, и шерсть у животного становится дыбом. Выброс адреналина в кровь способствует расширению сосудов сердца, мозга и легких и, напротив, сужению сосудов кожи и внутренних органов, особенно пищеварительных, вследствие чего происходит перераспределение объема крови, выгодное для борьбы. Усиливается деятельность сердца, повышается артериальное давление. Вся эта деятельность нуждается в обеспечении энергией, и адреналин мобилизует оба источника энергии: из жировых депо -- жирные кислоты и из печени -- глюкозу. Тем самым усиливается питание мышечной ткани и мозга. Все это вместе взятое -- сужение сосудов кожи, вздыбленная шерсть, уменьшающая теплоотдачу, повышение в крови уровня жирных кислот и глюкозы, легкая дрожь -- способствует повышению температуры тела, что создает оптимальные условия для протекания химических реакций. Это напоминает разминку спортсмена перед стартом и происходит в считанные секунды. Наконец, адреналин резко увеличивает способность сердца усваивать кислород. (Заметим в скобках, что у человека эта защитная мера может стать крайне опасной. Так, слишком интенсивное поглощение кислорода из крови сердцем при отрицательных эмоциях временно может создать кислородное голодание, что иногда приводит к недостаточности в работе сердца и даже к инфаркту миокарда. Но при нормальном течении стрессорной реакции адреналин, быстро разрушаясь, успевает дать стимул дальнейшему развитию антистрессорной защиты.) В гипоталамусе к этому времени происходят изменения в концентрации посредников -- нейромедиаторов. Расход этих веществ во время стресса увеличился -- они активизировали центры гипоталамуса, контролирующие выделение в кровь из гипофиза кортикотропин, гормона роста и пролактина. Эти гормоны обладают выраженной способностью мобилизовать жирные кислоты из жировых депо. Такое влияние энергетически необходимо, но использовать для этой цели в течение длительного времени адреналин нельзя: уж слишком сильную вегетативную бурю вызывает этот гормон. Если ситуация, вызвавшая стресс, не кратковременна, то необходим переход на более солидную энергетическую базу, что и обеспечивается вводом в действие жиромобилизующих гормонов гипофиза -- кортикотропина, гормона роста, липотропина и пролактина. Из жировых запасов эти гормоны берут жирные кислоты, которые обеспечивают сердцу в 6 раз больше энергии, чем глюкоза. Гипоталамические гормоны, вовлекая в обеспечение стрессорной реакции кортикотропин -- гормон гипофиза, который ведает деятельностью коры надпочечников, усиливают антистрессорную защиту и другим образом. Эта эндокринная железа -- кора надпочечников -- всегда активизируется, когда необходима защита. Вначале гипоталамус чисто нервными импульсами активизирует мозговой слой надпочечников и вследствие этого выделяется адреналин. Затем кортикотропин стимулирует выделение из коры надпочечников группы защитных гормонов, главным из которых является кортизол. Кортизол обладает многими из тех свойств, какими наделен адреналин, но время действия кортизола значительно больше. Происходит как бы второе преобразование сигнала -- сначала нервного в гормональный (выброс адреналина в ответ на активацию гипоталамуса), а затем острого гормонального ответа -- в длительную эндокринную защитную реакцию. В частности, кортизол (особенно в сочетании с гормоном роста) препятствует усвоению глюкозы в мышечной ткани. Это очень важно: мышцы великолепно съедают жирные кислоты, а для нервных клеток нужна глюкоза -- главное топливо, которое усваивают нервные клетки. Более того, кортизол еще одним путем влияет на перераспределение "топлива", а именно активируя процесс превращения белка в глюкозу. Это очень важно, так как в процессе борьбы пища не поступает извне, а запасы в организме резервного сахара -- гликогена -- очень ограничены. (Отметим по ходу дела, что именно поэтому при выделении большого количества кортизола вследствие очень сильного эмоционального воздействия у человека может развиваться даже временный сахарный диабет из-за неспособности быстро усваивать вновь образуемый сахар. Так, при падении курса акций на бирже возникает "диабет биржевиков". Если у того или иного индивидуума имеются к тому же определенные предпосылки, то длительный стресс может привести и к стойкому сахарному диабету.) Здесь нельзя вновь не отметить одно очень важное обстоятельство. Белки являются структурными и функциональными элементами клеток. Поэтому перевод клеточных белков в сахар очень невыгоден для организма. Следовательно, если уж приходится сложные белки с их многочисленными свойствами сжигать как простое топливо, то лучше брать эти белки из таких тканей, которые быстро обновляются в организме и которые, главное, не несут определенной структурной функции, так что временное уменьшение массы этой ткани окажется не столь повреждающим. Такой тканью являются лимфоциты, рассредоточенные в лимфатических железах и в других лимфоидных тканях -- селезенке, костном мозге и, наконец, тимусе, как это недавно выяснилось, -- главном органе клеточного иммунитета. Многие знают, что после сильного и длительного волнения легко заболеть простудным -- вирусным заболеванием. Казалось бы, что общего между волнением и склонностью к инфекции? Эта взаимосвязь порождена использованием лимфоцитов для обеспечения энергетических потребностей организма в период стресса (гл. 11). Но в разгар стресса все эти возможные последствия в расчет не принимаются. Напротив, обеспечение энергией -- главное. Тканям должно быть быстро доставлено дополнительное питание, и гипоталамус посылает импульсы к двигательным нервам сердца и сосудов. Еще более суживается просвет сосудов внутренних органов, усиливается деятельность сердца, повышается давление крови в системе и в результате ускоряется ток крови. (Вот почему длительные отрицательные эмоции особенно опасны для гипертоника, далеко не безразличны они и для здоровых людей, поскольку способствуют возникновению гипертонической болезни*. Одновременно адреналин, гормон роста, жирные кислоты, холестерин, кортизол и т. д.-- все те факторы, которые последовательно вовлекались в обеспечение стрессорной реакции, повышают свертываемость крови и тем самым помогают избежать тяжелых кровотечений, возникающих при ранении. (Но этот же защитный механизм может явиться причиной возникновения тромбоза сосудов и инфаркта сердца у человека под влиянием эмоционального возбуждения.) В процессе борьбы все, что мешает ей, должно быть заторможено. Поэтому гормон коры надпочечников -- кортизол в этот острый момент не только служит обеспечению энергией, способствуя, в частности, синтезу углеводов из белка, не только подавляет реакции клеточного иммунитета, но обладает еще свойством подавлять воспаление, тем самым уменьшая величину повреждения тканей при травме. (Именно поэтому в современной медицине кортизол и его производные -- кортизон, преднизолон и др. -- нашли такое удачное применение при различных типах воспалительных процессов -- от воспаления радужной оболочки глаза (ирита) до язвенного колита, ревматизма, болезней суставов и миокардита.) Но если повреждение тканей все же велико, то часть белков из травмированной ткани, попадая в общий кровоток, достигает иммунной системы и, действуя на нее подобно "чужим" белкам, то есть подобно микробам, производит иммунизацию против собственных тканей. В этом случае носители иммунитета -- антитела, проникая в ткани, могут вызвать их повреждение. Это грозит животному болезнями или даже гибелью через некоторое время после окончания борьбы от аутоиммунных заболеваний, развивающихся по тем же законам, по которым несовместимость тканей становится преградой при пересадке "чужих" органов от человека к человеку. Поэтому то обстоятельство, что кортизол, обеспечивал организм энергией за счет разрушения лимфоцитов, приводит в процессе стресса к снижению иммунитета, ослабляет опасность иммунизации против собственных тканей. (Соответственно в современной медицине кортизол вследствие своей способности подавлять иммунитет нашел широкое применение при лечении аллергических состояний, например бронхиальной астмы). Кортизол и регулятор его продукции гипофизный гормон -- кортикотропин, а также пролактин обладают способностью тормозить активность "полового центра" гипоталамуса. Это биологически целесообразно: пока борьба не закончена, ее результаты неизвестны, а раненое животное не должно приносить потомства. (Так, у женщин длительные отрицательные эмоции нередко приводят к прекращению менструального цикла, а у мужчин снижается сексуальная потенция.) Стресс, устраняя все лишнее, подавляет и аппетит. Гипоталамический центр аппетита тормозится во время эмоционального возбуждения, так же как и деятельность пищеварительной системы. Это целесообразно во имя борьбы. (Одно из таких знакомых всем проявлений -- пересыхание слизистой во рту и в горле при волнении.) Но вот борьба с ее большим расходом энергии закончена. Начинается фаза восстановления. Гипоталамус через находящийся в нем центр терморегуляции усиливает теплоотдачу. Расширяются кожные сосуды, увеличивается потоотделение, а у собаки, которая не имеет потовых желез, развивается одышка и язык почти вываливается из пасти, увеличивая испарение. Все это охраняет организм от чрезмерного перегревания, возможного вследствие интенсивного сгорания жирных кислот и глюкозы в ходе борьбы. Избыток жирных кислот, интенсивная мобилизация которых была столь необходима в энергетическом отношении, служит в период восстановления сырьем для синтеза холестерина. Это обстоятельство имеет очень важное значение, так как в послестрессовый период необходим "ремонт" поврежденных тканей за счет деления клеток. В то же время каждой новой клетке нужна оболочка -- мембрана, каркас которой содержит много холестерина. Так, сдвиг обмена при стрессе в сторону усиленного использования жирных кислот -- это не только обеспечение энергетических потребностей, но и способ сбережения и восстановления запасов глюкозы. Этот сдвиг обеспечивает и подавление иммунитета, и усиление свертываемости крови, и, наконец, повышение продукции холестерина -- важной структурной части клетки, без которой нарушается процесс клеточного деления. Все эти изменения происходят при каждом эмоциональном стрессе. Например, у студентов во время экзаменационной сессии тоже увеличивается содержание холестерина в крови -- одного из главных факторов развития атеросклероза. Но ведь жизнь заставляет держать экзамены отнюдь не только в стенах института. Так, частые или длительные волнения, создавая ложную ситуацию защиты, формируют типичную болезнь старения -- атеросклероз. Но все отрицательные следствия стресса как бы в будущем, а сейчас, в фазу непосредственного восстановления, все, что описывалось выше, полезно. Особый антидиуретический гормон прямо из гипоталамуса поступает в гипофиз и оттуда в кровь, задерживая выделение воды почками и тем помогая восстановлению потерянной крови. Усиливается ранее заторможенная гипоталамусом функция щитовидной железы, гормоны которой необходимы для восстановления поврежденных тканей. Это происходит потому, что гипоталамический центр, регулирующий работу щитовидной железы, в начале борьбы тормозит ее деятельность, а когда начинается период восстановления -- стимулирует. Затухает выделение кортизола, и это способствует восстановлению синтеза белка, чему ранее кортизол препятствовал, превращая белок в сахар. Так последовательно, этап за этапом регулируется через гипоталамус механизм защиты, а затем -- и восстановления потерь, если повреждение, пришедшее из внешней среды, совместимо с жизнью. Мы рассмотрели, как стрессорная реакция обеспечивает защиту организма в жизненно опасный для него момент. Но вспомним, каким образом осуществлялся механизм защиты от стресса. Происходило повышение в крови многих гормонов: адреналина, гормона роста, пролактина, кортикотропина, кортизола; увеличивалась концентрация в крови веществ, сгорание которых дает организму энергию, жирных кислот и глюкозы; происходило накопление холестерина, усиливалась свертываемость крови, увеличивалось артериальное давление и т. д. Все это означает отклонение от закона постоянства внутренней среды, от закона, соблюдение которого, как и защита, необходимо ради жизни. Однако мы знаем, что в силу кибернетического механизма регуляции гомеостатические системы стремятся к равновесию или к восстановлению стабильности и порядка. Поэтому вполне резонен вопрос: как же может в течение всей стрессорной ситуации, пока происходит "встреча кошки с собакой", существовать нарушение внутренней среды организма? Действительно, если повышается концентрация в крови рабочего гормона, например кортизола, то он, в соответствии с механизмом отрицательной обратной связи, должен затормозить выделение своего регулятора, в данном случае гипофизарного гормона кортикотропина, и выделение кортизола, не стимулируемое кортикотропином, должно снизиться до нормы -- до пределов, охраняемых законом постоянства. Но ведь этого не происходит, и уровень кортизола в крови в период стресса остается повышенным, создавая тем самым механизм антистрессорной защиты. В чем здесь дело? Для каждого гормона-регулятора существует свой рабочий фактор, который при повышении концентрации в крови вызывает подавление активности регулятора. Выделение кортикотропина должно быть заторможено повышенным уровнем кортизола; гормона роста и пролактина -- повышенным уровнем в крови сахара и жирных кислот. И все же одновременно в крови при стрессе определяется высокая концентрация как гормонов-регуляторов, так и рабочих гормонов и энергетических субстратов. Уже упоминалось, что Ганс Селье, говоря о повышении активности гипофиза, а затем и гипоталамуса при стрессе, не обратил внимания на то обстоятельство, что повышение активности гипоталамо-гипофизарного комплекса не может существовать сколько-нибудь длительно, если не произойдет повышение порога чувствительности гипоталамуса к тормозящему действию периферических сигналов. Иными словами, если не включится механизм, обеспечивающий выполнение закона отклонения гомеостаза. Физиологическое значение механизма повышения гипоталамического порога очень велико. При его отсутствии стрессорная приспособительная реакция была бы всегда кратковременной, она длилась бы столько, сколько необходимо для того, чтобы сработал механизм отрицательной обратной связи и система пришла бы в равновесие. Этого, как мы знаем, не происходит. Значит, при стрессе действительно имеет место повышение гипоталамического порога. А именно это явление -- повышение гипоталамического порога, как мы выяснили в главе 4, определяет регуляторный механизм развития, старения и регуляторный тип естественной смерти. Этим можно объяснить многое во взаимоотношениях между стрессом и болезнями. Стресс вызывает обменные сдвиги, сходные с теми, которые наблюдаются при старении. Концентрация в крови сахара, жирных кислот, холестерина возрастает. Это означает, что произошло повышение гипоталамического порога в системе энергетического гомеостата; высокий уровень гормона коры надпочечников при стрессе показывает, что повышение гипоталамического порога происходит и в адаптационном гомеостате. Это соответствует тому, что наблюдается и у горбуши в период нереста, то есть опять-таки при явлении, сцепленном с механизмом развития и смерти. Иными словами, то, что высшие организмы наделены самой высокой способностью защиты от стрессоров, обусловлено появлением в процессе эволюции живой природы сложных гомеостатических систем, венцом которых являются гипоталамические системы. Создать необходимые отклонения для организации защиты возможно только за счет повышения гипоталамического порога -- за счет того же механизма, который лежит в основе механизма развития, старения и болезней старения. Тем самым, защищаясь от внешних причин смерти, организм не только делает это ценой болезней адаптации, но и ускоряет естественный процесс старения. Вот таким образом невзгоды и печали уменьшают дни жизни. Остается еще добавить, что само повышение гипоталамического порога при стрессе вызывается следующим образом. Когда кошка и собака заметили друг друга, сигналы, оценивающие это событие, из центральной нервной системы устремляясь в лимбическую систему и в гипоталамус, активизируют его деятельность. Но любая деятельность в системе нервных клеток связана с расходованием посредников -- медиаторов нервного импульса. Вся вегетативная система подразделена на два взаимно уравновешивающихся, антагонистических отдела -- симпатическую и парасимпатическую нервную систему. В соответствии с этим имеются две группы медиаторов-посредников. Их условно можно назвать С медиаторы -- для симпатических импульсов и П-медиаторы -- для парасимпатических. К группе С-медиаторов относятся дофамин и норад-реналин -- вещества, структурно очень близкие к стрессорному гормону тревоги -- адреналину; группа П-медиа-торов включает серотонин и близкие к нему соединения (индоламины). С- и П-медиаторы синтезируются из аминокислот, соответственно тирозина и триптофана. Снижение концентрации в гипоталамусе С- и П-медиаторов при стрессе вследствие их повышенного расхода и вызывает повышение гипоталамического порога. Кстати, если такое снижение слишком выражено, что может произойти при длительном стрессе, то возникает психическая депрессия. Многие знают, как после чрезмерного эмоционального возбуждения на какой-то период может прийти апатия. Это признак истощения запасов нейромедиаторов, предупреждение, что необходим покой для периода восстановления. Действительно, с той или иной скоростью, в значительной степени зависящей от врожденной силы нервной системы, то есть от ее генетических особенностей, а также и от особенностей обмена веществ, происходит и нормализация содержания в гипоталамусе медиаторов. Это означает, что восстанавливается гипоталамический порог чувствительности и система саморегуляции вновь начинает работать правильно, обеспечивая постоянство внутренней среды организма. Буря, пронесшаяся вместе со стрессом, затихает: прошлое забыто или почти забыто, если во время стресса не произошло серьезных нарушений в деятельности организма. В этом умиротворении после бури отличие стресса от всего того, что связано с процессом старения. Поэтому рассмотрим в следующих трех главах, каким образом возрастные изменения в деятельности трех основных гомеостатических систем -- адаптационной, репродуктивной и энергетической -- приводят к возникновению трех нормальных болезней -- гиперадаптоза, климакса и ожирения, то есть болезней, которые с той или иной скоростью развиваются всегда в результате закономерного отклонения гомеостаза, связанного с осуществлением программы развития организма. Старея, человек начинает жить как бы в состоянии хронического стресса, и поэтому становится все более и более беззащитным, когда действительный стресс предъявляет свои требования к организму. Время -- универсальный стрессор. Глава 6. Нормальная болезнь адаптационного гомеостата -гиперадаптоз Адаптация, или приспособление к изменению факторов внешней и внутренней среды, -- одно из основных свойств живого организма. Способностью к адаптации обладают и одноклеточные, и сложные высшие организмы, хотя, естественно, проявляется она у них по-разному. Структура одноклеточных организмов не обеспечивает надежной защиты при значительных изменениях внешней среды. Соответственно у одноклеточных важнейшей формой адаптации является изменчивость. На этом свойстве основано привыкание микроорганизмов к токсическим веществам, в частности к антибиотикам. Если можно так выразиться, одноклеточные, не наделенные такой же степенью индивидуальности, как высшие организмы, адаптируются за счет изменения своей индивидуальности или путем изменения свойств всей популяции организмов за счет приобретения новых свойств (например, устойчивости к антибиотику). Напротив, у высших организмов сохранение индивидуальности обеспечивается специальными защитными механизмами, что соответствует принципу сохранения гомеостаза. Эти механизмы осуществляют изменения, нужные для защиты, но при этом сохраняется способность организма вновь вернуться к исходному состоянию, когда необходимость в защите отпадает. Хотя адаптация к повреждающим факторам осуществляется на всех уровнях систем организма, начиная с клеточного, однако для реализации гомеостатической защитной реакции у 'высших организмов имеется специализированная адаптационная система, или адаптационный гомеостат. Основными компонентами этой системы являются кора надпочечников, которая вырабатывает гормон защиты -- кортизол, гипофиз, который вырабатывает кортикотропин, регулирующий продукцию кортизола, и, наконец, гипоталамус, контролирующий секрецию кортикотропина (рис. 3). Вся эта тройка находится в одной упряжке, повинуясь приводам механизма обратной связи. Например, если в крови повышается концентрация кортизола, то он по механизму отрицательной обратной связи тормозит активность гипоталамуса, значит, продукцию своего регулятора -- кортикотропина. В результате продукция кортизола корою надпочечников снижается. Наличие такой взаимосвязи легко проверить следующим образом. Животному назначается определенное количество кортизола или его производного -- дексаметазона. Дексаметазон, тормозя по механизму отрицательной обратной связи выделение кортикотропина, тем самым уменьшает и активность коры надпочечников, контролируемой кортикотропином, то есть уменьшает продукцию кортизола. 0x08 graphic Если всегда использовать одну и ту же дозу тормозящего гормона -- дексаметазона, то степень снижения продукции кортизола будет зависеть от порога чувствительности гипоталамуса к действию дексаметазона. Например, у двухмесячных крыс под влиянием дексаметазона уровень кортизола в крови снизился на 51 %, а у крыс в возрасте восьми месяцев -- только на 11%. Следовательно, Дексаметазон у животных старшей группы оказывает менее выраженное тормозящее действие на гипоталамус. Иначе говоря, по мере старения происходит повышение порога чувствительности гипоталамуса к тормозящему влиянию рабочего гормона дексаметазона. Этот простой опыт удивителен по своей информативности: он демонстрирует сразу механизм и фундаментального закона биологии -- закона постоянства внутренней среды, и его антипода -- закона отклонения гомеостаза. Совершенно такое же явление наблюдается и у человека. Вот пример: у группы лиц, средний возраст которых был 56 лет, определенная доза дексаметазона снизила уровень кортизола в крови на 39%, а у молодых людей (средний возраст 24 года) --- на 54%. Это означает, что в среднем возрасте гипоталамус хуже воспринимает регулирующие сигналы, становится к ним менее чувствительным, что неизбежно приводит к нарушению закона постоянства внутренней среды. Но нарушение этого фундаментального закона биологии-- отклонение от нормы или болезнь, ибо стабильность среды есть главное условие сохранения "качества жизни" и самой жизни индивидуума. По мере старения в адаптационном гомеостате постоянно происходит то, что остро возникает в период стресса в условиях, когда организация защиты от повреждающего агента (стрессора) требует повышения работоспособности организма. В организации антистрессорной защиты фундаментальную роль играет ее материальное обеспечение, или снабжение энергетическими • веществами -- глюкозой и жирными кислотами, а также повышение концентрации в крови гормона защиты -- кортизола (последний регулирует течение стрессорной реакции). Но повышение в крови уровня кортизола в соответствии с механизмом отрицательной обратной связи должно привести к подавлению его продукции. Однако если имеет место повышение гипоталамического порога чувствительности к тормозящим сигналам, то механизм отрицательной обратной связи срабатывает с запозданием или вообще оказывается недостаточно эффективным. Так бывает в процессе нормального старения, когда вследствие нарушения регуляции гормоны адаптации оказывают на организм нежелательное влияние. Так, например, если приглядеться внимательно, нередко можно видеть, что у еще сильного мужчины лет 45--60 ноги тоньше, чем это должно соответствовать его торсу, а лицо имеет значительно более округлые очертания, чем это свойственно юношам, быть может, менее физически крепким. Эти изменения -- признаки избыточного влияния кортизола на организм. Аналогия между механизмами старения и стресса была бы неполной без одного примера. Обменные сдвиги у горбуши создаются повышенной активностью коры надпочечников, вырабатывающей в период подготовки к нересту избыточное количество кортизола. Именно кортизол снижает использование сахара в тканях, тем самым обеспечивая превращение его в жир и вызывая своеобразное накопление жира -- горб. В дальнейших разделах будет рассмотрено, почему такого рода обменные сдвиги приводят к развитию болезней. Механизм этих болезней во многом схож с болезнями, которые возникают в результате влияния на организм стрессорных факторов. Сходство между стрессом и нормальным старением состоит в том, что в обоих случаях повышается гипоталамический порог чувствительности к регулирующим воздействиям. По существу, возрастной процесс повышения гипоталамического порога создает "нормальную болезнь" регуляции в адаптационном гомеостазе, болезнь, которую можно обозначить термином "гиперадаптоз" *. Действительно, гиперадаптоз -- болезнь, ибо само это слово указывает на стойкое нарушение гомеостаза, приводящее к уменьшению жизнеспособности организма. Но гиперадаптоз -- "нормальная болезнь", так как возникает всегда в процессе старения организма, а не под влиянием внешних причин или случайных поломок в механизме регулятора. В чем же заключается отличие гиперадаптоза от болезней адаптации? Известно, что адаптационный гомеостат, помогая организму выдерживать натиск факторов внешней среды, сам претерпевает изменения под влиянием стрессорных факторов. С этими изменениями и связаны болезни адаптации, то есть болезни, которые развиваются в процессе осуществления механизма защиты. Гиперадаптоз же развивается в силу внутренних причин, изменяющих систему регуляции в адаптационном гомеостазе. Так, гиперадаптоз будет возникать и в самой благоприятной обстановке лишь под влиянием фактора времени. Это и происходит в действительности, ибо гиперадаптоз реально существует и практически диагностируется просто -- по повышению порога чувствительности гипоталамо-гипофизарного комплекса к тормозящему действию дексаметазона (см. выше). Но гиперадаптоз это не только "нормальная болезнь старения", вносящая в жизнь организма черты хронического стресса. Когда возникает реальная стрессорная ситуация, то разрегулированная адаптационная система дольше, чем это необходимо, не приходит в равновесие и ее ответ на стресс в целом становится избыточным. Поэтому организм платит за свою защиту в старости больше, чем в молодые годы. Именно гипоталамические сдвиги, свойственные нормальному старению, делают адаптационную систему все хуже регулируемой, все более инертной. Гипоталамический регулятор не только утрачивает способность "чутко" прислушиваться к изменениям внешней и внутренней среды, но отчасти начинает жить как бы своей обособленной жизнью, постепенно сам создавая нарушения в адаптационной системе. Пожалуй, в известном смысле лучше вообще не зависеть от главного регулятора, чем иметь регулятор, плохо работающий. В этом случае защитные изменения возникают без всякой надобности, в силу действия внутренних закономерностей. Так, само старение заставляет человека жить и вне стрессорной ситуации как бы в постоянном хроническом стрессе. Буря обменных сдвигов, возникающих в процессе старения, вначале, правда, не столь интенсивна, как при стрессе, но ведь эта буря не стихает, постепенно разрушая фундамент здоровья -- постоянство внутренней среды. Гиперадаптоз и является одной из причин того, что человек в старости может существовать в более узком диапазоне изменений внутренней и внешней среды. В пожилом возрасте нередко незначительные причины -- волнения, физическое перенапряжение, расстройство пищеварения, даже легкая простуда -- могут вызвать внезапную, как бы почти беспричинную смерть -- смерть от старости, как чаще всего говорят. Однако хотя приведенное утверждение стало общепринятым и в геронтологии, оно уязвимо во многих отношениях. Прежде всего, снижение способности к приспособлению (а именно об этом свидетельствует гибель от незначительных по силе факторов) есть, по существу, также следствие болезни -- гиперадаптоза, и того накопления повреждений в различных органах и системах которые сопровождают гиперадаптоз и родственные ему возрастные процессы. Как уже было сказано, никто не умирает от старости -- и в старости человек умирает от болезней, хотя в некоторых случаях это положение не является самоочевидным. Ведь гиперадаптоз -- это не обычная болезнь. Она развивается у всех, не вызывается видимыми причинами, и поэтому кажется несуществующей. Так, живой организм всегда платит за адаптацию к внешним воздействиям ускорением старения (глава 5). Затем нарушение адаптации, возникающее в процессе нормального старения, вносит эту плату уже вне всякого призыва к защите, по существу, вопреки организму. То, что послужило приспособлению, в конце концов лишает организм возможности не только приспособиться к самым умеренным требованиям, предъявляемым жизнью, но и в силу действия внутренних факторов влечет за собой болезнь -- гиперадаптоз. Что это за факторы/ которые "двигают организмом"? В наиболее общей форме можно сказать, что это именно те силы, которые служат развитию организма. Что дело обстоит именно так, станет видно из следующей главы. 0x08 graphic Климакс является одновременно и нормой и болезнью: нормой потому, что климакс в женском организме явление закономерное, а болезнью потому, что это стойкое нарушение регуляции, приводящее в конечном итоге к снижению жизнеспособности организма. Глава 7. Нормальная болезнь репродуктивной системы -- климакс К Как и во всех системах, контролируемых гипоталамусом, в репродуктивной системе можно выделить три структурных этажа: гипоталамус -- гипофиз -- половые железы (рис. 4). В гипоталамическом половом центре вырабатываются гормоны, стимулирующие выделение гипофизом гонадотропных гормонов -- регуляторов половых желез. В свою очередь, гонадотрогшны стимулируют продукцию половыми железами половых гормонов и созревание половых клеток. Взаимоотношения в этой трехкомпонентной системе контролируются механизмом обратной связи. В частности, женские половые гормоны обладают способностью тормозить активность гипоталамуса, тем самым снижая выделение гонадотропинов -- стимуляторов половых желез. Как читатель уже, наверное, понимает, если бы этот механизм всегда работал по правилам классической кибернетики, то он должен был бы сохранить стабильность системы, но стабильность, исключающую развитие, подобно тому, как исключено повышение температуры сверх нормы в исправно работающем термостате. Но ведь хорошо известно, что применительно к репродуктивной системе такой стабильности как раз и нет. Все высшие животные рождаются неполовозрелыми, и лишь со временем происходит половое созревание. Каким же образом половое созревание тормозится до той поры, пока организм не будет подготовлен к размножению? После рождения человека гипоталамус обладает высокой чувствительностью к тормозящему влиянию половых гормонов, которые уже вырабатываются неполовозрелым организмом. Поэтому активность полового центра гипоталамуса подавляется в соответствии с механизмом отрицательной обратной связи между ним, гипоталамусом, и рабочим органом -- половыми железами. В этих условиях гипоталамус не стимулирует продукцию гипо-физарных гормонов, контролирующих деятельность половых желез, и вся репродуктивная система находится в состоянии, близком к покою. Такое равновесие должно было бы сохраняться длительно, теоретически в течение всей жизни, если бы чувствительность гипоталамуса к половым гормонам оставалась на одном уровне. Но все дело в том, что чувствительность гипоталамуса к тормозящему влиянию половых гормонов снижается по мере увеличения возраста. Это явление может быть проиллюстрировано следующими экспериментальными данными. Для того чтобы у крысят в возрасте одного месяца (то есть до наступления половой зрелости) на 50% подавить активность гипоталамуса, необходимо применить в неделю 0,5 мкг полового гормона. Зрелому животному для подавления "полового" центра гипоталамуса необходимо уже в четыре раза больше этого гормона. Но если повышается порог чувствительности полового центра к подавлению, то гипоталамус будет постепенно освобождаться от тормоза, а это приведет к повышению его активности и в итоге к стимуляции развития половых желез. Соответственно будет увеличиваться продукция половых гормонов, что вызовет развитие вторичных половых признаков, и т. д. В конце концов произойдет включение репродуктивной функции. Следовательно, механизм полового, созревания основан на явлении повышения деятельности гипоталамуса, или, точнее, повышения гипоталамического порога чувствительности к действию половых гормонов. любой гомеостатической системе имеются регулятор и рабочий орган и что взаимоотношения между ними определяются механизмом обратной связи, то легко представить, что повышение порога чувствительности регулятора (в данном случае гипоталамуса) --единственный способ увеличения мощности системы при сохранении механизма саморегуляции. Допустим, что усиление мощности системы происходит другим способом, а именно за счет самостоятельного усиления деятельности рабочего органа -- половых желез. В этом случае повышение в крови концентрации половых гормонов в силу механизма отрицательной обратной связи между рабочей железой и ее регулятором прочно бы затормозило активность регулятора -- гипоталамуса, то есть ликвидировало бы саму возможность и регуляции и развития. Такая ситуация, например, возникает, если в половых железах появилась опухоль, продуцирующая гормоны. Опухоль, производящая половые гормоны в избытке, вызывает появление внешних признаков полового созревания, но она не может вызвать истинного полового созревания. Способность к оплодотворению в таких случаях отсутствует из-за стойкого угнетения гипоталамического регулятора высоким уровнем половых гормонов, действующих в соответствии с механизмом отрицательной обратной связи. Следовательно, допущение, что в развитии репродуктивной системы ведущим фактором может быть усиление активности периферического звена гомеостатической системы, неверно. 0x08 graphic Но при возрастании мощности системы вследствие повышения порога чувствительности гипоталамического регулятора к половым гормонам последние не могут затормозить его деятельности. Напротив, эта деятельность постепенно усиливается, и гормоны, стимулирующие активность половых желез,-- гонадотропины -- будут выделяться во все большем количестве, заставляя тем самым половые железы работать все интенсивнее, пока не произойдет половое созревание. Вместе с тем благодаря активному состоянию регулятора сохраняется способность репродуктивной системы к циклической функции, что создает необходимые условия для оплодотворения. Гипоталамический половой центр в женском организме состоит из тонической и циклической областей. Именно к изменениям, происходящим в процессе развития в тоническом центре, применимы только что изложенные данные. Такого рода изменения обеспечивают половое созревание в мужском и женском организмах. Но чтобы в женском организме произошло включение репродуктивного цикла, необходимо не только половое созревание, но также особая стимуляция циклического центра. Эта стимуляция осуществляется женскими половыми гормонами следующим образом. Изменения, происходящие в системе, контролируемой тоническим центром, приводят к увеличению продукции женских половых гормонов. Когда их концентрация достигает определенного уровня, женские гормоны, действуя по механизму положительной (то есть стимулирующей) обратной связи на циклический центр, вызывают серию изменений, приводящих к овуляции -- выбросу яйцеклетки из яичника. В итоге создаются необходимые условия для оплодотворения. А каким образом происходит обратный процесс-- выключение репродуктивной функции? До сих пор живо представление, что это типичное возрастное явление связано или с истощением запаса половых клеток в яичниках, или со снижением чувствительности яичников к своим регуляторам -- гонадотропинам. Между тем уже довольно давно существует совершенно иное представление об этом процессе *. Новое объяснение механизма выключения репродуктивной системы состоит в том, что этот процесс, напротив, является следствием повышения деятельности гипоталамуса. Попробуем разобраться. Повышение гипоталамического порога чувствительности до полового созревания происходит в тоническом центре, но затем начинается также и в циклическом центре. Повышению порога чувствительности в циклическом центре сопутствует увеличение в крови количества женских половых гормонов, обусловленное возрастными изменениями состояния тонического центра (см. выше). Если бы этого не происходило, их уровень оказался бы недостаточным для того, чтобы, воздействуя на циклический центр, вызвать овуляцию. Экспериментальные данные четко подтверждают это предположение, Теперь рассмотрим, как обеспечивается повышение продукции половых гормонов, которое в течение всего периода зрелости позволяет преодолевать эти гипоталамические изменения. Несмотря на наступление половой зрелости, у крыс в возрасте трех месяцев повышение гипоталамического порога чувствительности продолжается. Этот вывод следует из того, что доза полового гормона, необходимая для подавления деятельности тонического полового центра гипоталамуса, возрастает по мере увеличения возраста животного. Иными словами, механизм повышения гипоталамического порога, включив функцию размножения, не перестает после этого существовать, а продолжает действовать. Учитывая структуру механизма обратной связи в репродуктивной системе, рассмотрим, к чему теоретически должна привести эта несообразность -- продолжение действия механизма включения репродуктивного цикла после того, как это событие произошло. Если порог чувствительности гипоталамического регулятора повышается, то взаимодействие между гипоталамусом и рабочим органом, основанное на механизме отрицательной обратной связи, будет сохраняться лишь при увеличении продукции полового гормона. Без увеличения уровня полового гормона, то есть увеличения силы сигнала, он просто не будет осуществлять цели, перестанет воздействовать на свой регулятор, что разомкнет цепь взаимодействия. Действительно, в процессе старения в ответ на повышенную стимуляцию со стороны гипоталамо-гипофизарной системы половые железы вырабатывают все увеличивающееся количество половых гормонов, которые и обеспечивают сохранение системы саморегуляции, несмотря на гипоталамические изменения. Однако теоретически очевидно, что продолжающееся повышение гипоталамического порога в каком-то возрасте все же должно вызвать нарушение в работе системы и тем самым привести к выключению репродуктивной функции. Все это и приводит к выводу, что в основе возрастного выключения репродуктивной функции лежит не что иное, как повышение гипоталамического порога чувствительности к регулирующему влиянию половых гормонов. Косвенно об этом можно судить на основании данных о возрастном увеличении выделения гонадотропинов -- гипофизарных гормонов, контролирующих деятельность своей рабочей железы -- яичников. Так, между 25-ю и 35-ю годами выделение суммарных гонадотропинов у женщин увеличивается в 3 раза. Между тем в возрасте 25 лет система репродукции уже полностью включена и уровень гормонов-регуляторов достигает своего оптимального значения. Следовательно, трехкратное увеличение этого уровня не диктуется требованиями процесса развития и полового созревания. Такое увеличение служит чему-то другому, и этим другим является механизм, который в конечном итоге должен привести к возрастному выключению репродуктивной функции. Действительно, к 45 годам у женщин с еще нормальным циклом выделение регулирующих гормонов -- гонадотропинов -- еще больше возрастает (примерно в 6 раз по сравнению с величиной, свойственной 25 годам). Это увеличение отражает то обстоятельство, что порог чувствительности гипоталамуса еще больше повышается и приближается период, когда это повышение разомкнет кибернетическую цепь саморегуляции, нарушив тем самым циклическую деятельность яичников. Таким образом, возраст наступления климакса определяется скоростью, которой по мере старения происходит повышение гипоталамического порога. Но имеется и второй фактор, определяющий время возникновения климакса. Это величина компенсаторной реакции яичников, которая, в свою очередь, вызывается возрастным увеличении продукции гормонов-регуляторов -- гонадотропинов. Действительно, параллельно увеличению продукции гонадотропинов происходит увеличение продукции женских половых гормонов -- эстрогенов, или, точнее, неклассических фенолстероидов. Такое повышение крайне необходимо для сохранения механизма саморегуляции. Повышение активности яичников с возрастом -- это, по существу, компенсация, которая не позволяет произойти преждевременному выключению репродуктивной функции. Но следует напомнить: повышение порога чувствительности к эстрогенам происходит и в циклическом центре, и когда эти изменения заходят достаточно далеко, эстрогены не могут оказать того влияния на циклический центр, которое вызывает овуляцию. В результате происходит возрастное выключение репродуктивной функции. Следовательно, повышение уровня половых гормонов -- это действительно компенсаторный процесс, создаваемый повышением гипоталамического порога чувствительности в тоническом центре, но направленный на преодоление возрастного повышения гипоталамического порога в циклическом центре. Поэтому климакс и менопауза будут наступать тем позже, чем более выражена компенсация, то есть чем больше яичники вырабатывают женских гормонов, способствуя тем самым преодолению тенденции к размыканию механизма саморегуляции в репродуктивном гомеостате. Суммируя все сказанное, можно заключить, что повышение гипоталамического порога в системе репродуктивного гомеостата вначале обеспечивает возрастное включение, а затем возрастное выключение репродуктивной функции. Положение о регуляторной природе климакса подтверждено следующим тонким экспериментом. Исследователи произвели кастрацию крыс двух возрастных групп -- молодой и старой. Затем яичники от молодых животных пересаживались в организм старых животных. Если возрастное выключение деятельности яичников зависело бы от старения собственных яичников, то такая операция могла бы привести к восстановлению их деятельности. Однако в организме старых животных молодые яичники не начинали функционировать. Но зато когда яичники, взятые от старых крыс, были пересажены молодым животным, деятельность этих яичников восстановилась. Вывод однозначен: когда при старении прекращается способность к размножению, это связано не с истощением половых желез, а с нарушениями, происходящими в организме в целом. Иными словами, гипоталамус навязывает яичникам свой темп старения. Действительно, расчеты показывают, что за весь репродуктивный период у женщин расходуется около 2500 фолликулов, содержащих яйцеклетку. Между тем в обоих яичниках имеются зачатки примерно 500 000 фолликулов, то есть в 200 раз больше, чем используется за всю жизнь. Однако если регуляторные гипоталамические нарушения длятся в течение определенного времени, то в яичниках действительно возникают стойкие изменения. Причем возможно, что избыточная стимуляция яичников гормонами-регуляторами •-- гонадотропинами способствует возникновению этих изменений, так же как возрастное повышение уровня регуляторов-гонадотропинов снижает чувствительность к ним яичников. Разумеется, у человека и у животных регуляция репродуктивной функции происходит по-разному, что определяется видовыми различиями. Однако принцип -- повышения гипоталамического порога чувствительности к половым гормонам в соответствии с возрастом -- остается неизменным. Недавними исследованиями это было подтверждено. Так, например, выяснилось, что для торможения продукции гонадотропинов с помощью аналога полового гормона (кломифена) у мужчин до полового созревания необходим 1 мг препарата, при достижении зрелости -- 5 мг, а у мужчин среднего возраста -- уже 500 мг. Аналогичные данные были получены и при обследовании девушек -- сравнивались периоды до и после полового созревания. Наконец, в 1978 г. было показано, что у женщин в период климакса имеется существенное повышение гипоталамического порога по сравнению с уровнем, свойственным молодым женщинам. Однако некоторое время оставалось неясным: обратимы ли изменения, происходящие с возрастом, на уровне гипоталамуса? Возможно ли такое воздействие на механизм регуляции, которое обеспечило бы восстановление деятельности яичников? Недавние эксперименты на животных позволяют ответить на эти вопросы положительно. Так, в лаборатории эндокринологии Ленинградского института онкологии восстановление циклической деятельности яичников у животных было достигнуто с помощью препарата эпиталамина -- гормона, полученного из эндокринной железы эпифиза. Подобный эксперимент, приведший к аналогичным результатам, произвел профессор Джозеф Мейтес с сотрудниками (США). Примененный им другой препарат -- леводофа (предшественник дофамина) действует на гипоталамус примерно так же, как и гормон эпифиза. Таким образом, опыты показали возможность влияния на одно из наиболее типичных проявлений старения -- угасание способности к воспроизведению. То обстоятельство, что главным элементом механизма выключения репродуктивной функции является повышение гипоталамического порога, служит важным доводом в пользу того, что аналогичное повышение гипоталамического порога, наблюдающееся в адаптационном гомеостате( глава 6), также связано с внутренним механизмом старения. Действительно, выключение репродуктивной функции наступает у всех особей женского пола всех видов млекопитающих, в том числе и человека. Следовательно, возрастное выключение репродуктивной функции не связано с внешними факторами, действие которых может то проявляться, то отсутствовать. Но если возрастное выключение репродуктивной функции обусловлено повышением гипоталамического порога, являющегося обязательным элементом программы развития организма, то можно заключить, что аналогичное явление, происходящее по мере старения в адаптационном гомеостате, также отражает внутреннюю (генетическую) закономерность реализации программы развития. Модель возрастного включения и выключения репродуктивной функции помогает понять, кроме того, как вообще процесс нормального старения трансформируется в болезни старения. Как мы помним, после того как гипоталамический механизм вызывает включение репродуктивной функции, он продолжает функционировать, обеспечивая в течение определенного периода жизни сохранение репродуктивной функции. Но внимание! Получается, что повышение с возрастом выделения гормонов-регуляторов (гонадотропинов) и эстрогенов -- гормонов яичников (то есть то, что по существу, отражает нарушение постоянства внутренней среды) "полезно", так как именно эти сдвиги обеспечивают сохранение способности к деторождению, противодействуя в течение определенного периода механизму выключения репродуктивной функции. Однако слово "полезно" не напрасно здесь помещено в кавычках. Ведь все, что описано выше, не несет в себе идеи ни пользы, ни вреда, хотя обе эти оценки одновременно применимы к описываемым событиям. Вернее было бы сказать -- "так устроено". Многие исследователи настаивали на том, что возрастное выключение репродуктивной функции полезно, ибо оно обеспечивает выполнение сразу нескольких требований: а) ограничивает число организмов в популяции, что способствует поддержанию оптимального количества особей в занимаемом жизненном пространстве; б) снижает вероятность возникновения врожденных дефектов, частота которых увеличивается у потомства по мере старения материнского организма; в) регулирует темп естественной смены поколений в условиях более широкого обмена наследственным материалом, чем это имело бы место при отсутствии возрастных ограничений воспроизведения. Механизм возрастного выключения репродуктивной функции действительно соответствует выполнению всех этих требований. Иными словами, наличие такого механизма биологически целесообразно, так как способствует повышению жизнеспособности вида. Но все эти категории полезности осуществляются на самом деле не специально, то есть не ради "предусмотренного природой" благополучия вида, а просто тем, что у высших организмов возрастное включение репродуктивной функции осуществляется вышеописанным гипоталамическим механизмом. Все остальное -- лишь следствия, вытекающие из принципа работы этого механизма, следствия, не связанные с биологической идеей удовлетворения потребностей вида, хотя и обеспечивающие эти потребности наиболее рациональным способом. То, что представление о пользе условно, сразу становится ясно, как только мы попытаемся распространить эту оценку на конкретные изменения, происходящие у каждого индивидуума в процессе старения. С возрастом повышается продукция гонадотропинов. С одной стороны, это повышение необходимо -- оно часть механизма, включающего в процессе развития репродуктивный цикл. Но в самом этом явлении заключено нарушение закона постоянства внутренней среды организма. Ведь гонадотропины как гормоны-регуляторы понуждают половые железы работать все интенсивнее. Если количество гоиадотропинов в крови увеличивается почти в 10 раз к моменту климакса и менопаузы, то это означает, что яичники подвергаются усиленной стимуляции. В результате увеличивается продукция половых гормонов. Такое увеличение, конечно, необходимо для сохранения механизма обратной связи в репродуктивном гомеостате в условиях все повышающегося гипоталамического порога, но одновременно половые гормоны оказывают избыточное стимулирующее действие на органы репродуктивной системы. Избыточная стимуляция этих органов приводит, например, к тому, что в период климакса нередко развиваются дисфункциональные маточные кровотечения. При этом получается весьма своеобразная ситуация: чем больше будет вырабатываться половых гормонов, то есть чем выраженнее будет компенсация, тем длительнее будет сохраняться репродуктивная функция, создавая впечатление о благополучии и здоровье. Но тем выраженнее будут и побочные изменения, вызываемые избыточным действием половых гормонов на органы репродуктивной системы. Иными словами, чем дольше длится репродуктивный период у женщины, тем более вероятно ожидать развития болезней, связанных с механизмом компенсации. В этом смысле дисфункциональные маточные кровотечения, то есть болезнь, являются побочным продуктом попытки организма противодействовать наступлению климакса. Вместе с тем статистически отмечено, что у женщин, заболевающих раком молочной железы после менопаузы, часто имеет место более позднее, чем обычно, выключение репродуктивной функции. Действительно, менопауза наступает тем позднее, чем выраженнее процесс компенсации. Но усиление компенсации, осуществляемой половыми гормонами, вследствие своего влияния на органы репродуктивной системы способствует и развитию климактерических кровотечений и даже опухолей. Роль повышенной стимуляции органа в развитии рака показана во многих экспериментах с животными. Так, например, если кастрировать крысу, то продукция гонадотропинов у животного увеличится до предела, ибо в этих условиях устраняется торможение, осуществляемое половыми гормонами по механизму отрицательной обратной связи. Затем, если удаленный яичник помещают в ткань селезенки, то гонадотропины, действуя на трансплантированный туда яичник, вызывают развитие в нем опухолей, если эксперимент продолжается длительно. Это демонстрирует развитие опухоли под влиянием нарушения закона постоянства внутренней среды (в данном случае повышения концентрации в крови гонадотропинов). Нельзя исключить, что увеличение частоты рака яичников у человека связано с возрастным повышением продукции гонадотропинов. Природа в данном случае досконально точно воспроизводит механизм описанного выше эксперимента, не ведая, таят ли сдвиги внутренней среды, возникающие в процессе старения, опасность для индивидуума. Таким образом, тот же самый процесс компенсации, который является неотъемлемой частью механизма развития, со временем вызывает патологические изменения или болезнь. На основании механизма возникновения такие болезни, связанные с процессом развития, логично назвать болезнями компенсации. С этой точки зрения механизм возрастного прекращения репродуктивной функции -- климакс, будучи физиологическим процессом, является вместе с тем и болезнью компенсации. В этом примере превращения механизма развития в механизм старения и болезней старения легко увидеть диалектический принцип перехода количества в качество. Уровень гонадотропинов-регуляторов, возрастая по мере старения организма, вначале обеспечивает включение репродуктивной функции, а затем, лишь в силу накопления количества гонадотропинов, вызывает противоположный эффект -- выключение репродуктивной функции и развитие болезней. Причина этих болезней заложена в самом механизме развития, то есть в генетической программе, на выполнение которой направлено возрастное повышение продукции гонадотропинов. Так проявляется еще один закон диалектики -- единство противоположностей, заключенное во внутренней сущности явлений. Та движущая сила, которая с помощью гонадотропинов обеспечивает два взаимосвязанных, но противоположных по физиологическому значению процесса -- возрастное включение и возрастное выключение функции репродукции, обнажает скрытый принцип закона единства противоположностей, единства, которое заключает в себе и механизм развития, и отрицание развития через трансформацию его в многоликое явление старения и болезней старения. Все это в данном случае реализуется за счет взаимодействия закона постоянства внутренней среды и закона отклонения гомеостаза. Действительно, сохранение репродуктивной функции в течение длительного периода жизни (что соответствует действию закона постоянства внутренней среды) обеспечивается компенсаторным повышением продукции половых гормонов, то есть достигается за счет выполнения противоположного закона -- закона отклонения гомеостаза. Вот уж в действительности единство противоположностей, причем столь тонко завуалированных противоположностей, что внешнее их проявление выглядит более чем благополучно. Ведь чем длительнее период репродукции, тем отдаленнее нам представляется старение, которое интуитивно всегда ассоциируется с прекращением возможности деторождения. Но в том-то и дело, что, действуя в одной упряжке единства, противоположности не теряют своей сути: увеличение длительности детородного периода одновременно создает условия, ведущие к более раннему прекращению жизни за счет болезней старения. Связь климакса с климактерическими кровотечениями и с нарастанием частоты опухолей в репродуктивной системе вполне рельефно отражает двуликий образ климакса. Два лика климакса -- и нормы, и болезни -- характеризуют отсутствие грани между возрастом и болезнью, между нормой и патологией, обнажая еще раз сущность единства противоположностей, скрытых в каждом явлении природы. Если вдуматься, то в данном случае перед нами модель превращения механизма развития организма в механизм старения с его регуляторным типом смерти, хотя вклад репродуктивного гомеостата в конкретные причины смерти у млекопитающих, возможно, не так уж и велик. В примере, относящемся к механизму естественной смерти у горбуши, вклад, вносимый репродуктивным гомеостатов, несомненно, более значителен, хотя и в этом случае изменения, происходящие в репродуктивной системе, вовлекают другие системы, и прежде всего энергетическую и адаптационную, которые в тройственном союзе друг с другом "творят беззаконие" в рамках закона отклонения гомеостаза. Но именно энергетические сдвиги определяют в конечном итоге характер возрастной патологии. Это я и постараюсь показать в следующих главах, посвященных энергетической системе организма. Основные проблемы возрастной патологии будут изложены на модели ожирения, ибо, фигурально говоря, высшие организмы в процессе старения сгорают в пламени жиров. Человек, который в течение всей жизни руководствуется аппетитом как мерой потребности в еде, неизбежно "впадает в заблуждение". Глава 8. Возрастные изменения в регуляции аппетита Живые организмы являются открытыми системами, так как они получают из окружающей среды и отдают в нее энергию и вещество. Наиболее устойчива живая система в стационарном состоянии, при котором приход энергии и вещества идет с постоянной скоростью соответственно их расходу. Поэтому теоретически для увеличения продолжительности жизни необходимо, чтобы стационарное состояние строго поддерживалось на одном уровне после окончания роста организма. Этого, однако, не происходит. Наиболее наглядный пример -- возрастное увеличение массы жира в организме. Почему же стационарное состояние энергетических процессов не сохраняется? 0x08 graphic Обычно ответ на этот вопрос ищут в общих законах физики. Но закон возрастания энтропии не играет решающей роли в открытых системах, к которым принадлежат живые организмы. Теоретически можно представить существование такой "живой машины", где постоянно поддерживается равновесие между приходом вещества и энергии благодаря способности "живой машины" к регулированию, самообновлению, ремонту и приспособлению к меняющимся условиям внутренней и внешней среды. То обстоятельство, что в живой системе стационарное состояние не сохраняется, заставляет искать причину нестабильности в биологических закономерностях, а не в физических законах. Наличие стационарного состояния в энергетической системе соответствовало бы точному выполнению закона постоянства внутренней среды организма. Вместе с тем закономерное нарушение стационарного состояния происходит, как я это постараюсь показать, в соответствии с законом отклонения гомеостаза. Хотя живой организм является прежде всего "энергетической машиной", работающей по законам физики и химии, эта машина не может самостоятельно достигнуть стойкого уровня поддержания стационарного состояния, так как его утрата подчинена не физическим закономерностям, а биологическим, от которых живая система не может "отделяться" без того, чтобы не потерять способности к развитию, то есть к существованию. Поэтому можно утверждать, что организм, стремясь в каждый данный момент к стационарному состоянию, никогда его не обретает, или, иными словами, практически в нормальных условиях стационарное состояние существует в каждый данный отрезок времени, данный момент, но оно утрачивается во времени, подчиняясь диалектике развития. Рассмотрим на примерах, относящихся к возрастному ожирению, как нарушается энергетическое равновесие в организме по мере старения. Возрастное увеличение количества жира для краткости называют ожирением, хотя по ряду признаков оно отличается от ожирения как болезни, характеризующейся выраженным избыточным накоплением жира. Было бы правильнее, терминологически разграничивать ожирение-болезнь и возрастное ожирение хотя бы уже потому, что возрастное ожирение практически возникает в том или ином возрасте у всех, тогда как ожирение-болезнь -- удел некоторых. Даже в том случае, если вес тела по мере старения не возрастет, содержание жира в нем увеличивается. (рис. 5). Показатель веса остается стабильным за счет снижения количества мышечной и костной тканей. Учитывая, что у зрелого мужчины с весом тела в 70 кг имеется примерно 10 кг жира, увеличение веса тела на 10-- 12 кг к 50 годам по сравнению с весом, наблюдавшимся в 20 лет, соответствует, по существу, двукратному увеличению жировой массы. Как это много -- видно из сопоставления показателя увеличения массы жира с любым другим показателем, охраняемым законом постоянства. Так, например, возрастание артериального давления в 2 раза -- это уже тяжелая гипертония, а возрастание концентрации сахара в 2 раза -- это выраженный сахарный диабет. Почему же происходит возрастное увеличение веса тела? Наиболее часто на этот вопрос отвечают так: человек по мере старения начинает тратить энергии меньше, чем ее получает. Избыток поступления энергетического материала и создает ожирение. Однако приведенный ответ не вполне надежен. Его можно считать справедливым лишь в частных случаях, когда действительно либо увеличивается существенно поступление пищи, либо уменьшается расход энергии за счет снижения функциональной активности организма и соответственно снижения теплопродукции. Поэтому если в эксперименте закармливать кого-либо, то воспроизвести ожирение легко. Равным образом, если резко снизить физическую активность и в то же время сохранить обычную норму пищи, вес тела также начнет увеличиваться. Вместе с тем почти каждый может вспомнить такой период в своей жизни (обычно соответствующий возрасту 20--25 лет), когда, несмотря на колебания в физической активности, температуре окружающей среды и пищевом рационе, вес тела оставался практически стабильным. Это означает, что существует регуляция, действие которой направлено на стабилизацию веса тела. Регуляторный механизм может ограничивать вес тела двумя способами: или путем контролирования количества энергии, поступающей в организм с пищей, или путем регулирования теплоотдачи. Первый из этих способов -- контроль за потреблением пищи, или регуляция аппетита, изучен в настоящее время более полно. Казалось бы, все должно быть просто: если осуществляется контроль веса тела, то аппетит призван точно отражать расход энергии организмом. Соответственно, если физическая активность с возрастом снижается, то количество потребляемой пищи, регулируемое аппетитом, должно уменьшаться. Однако трудно представить такое устройство, которое хранило бы в своей памяти данные не только о приходе энергетических веществ в организм (как это делает, например, газовый счетчик), но, что значительно сложнее, и о расходе энергии в течение определенного времени в прошлом. Что же есть в действительности? Как следует из новейших исследований, регулятор, контролирующий вес тела, состоит из двух устройств. Первое корректирует содержание жира в организме, но не прямым путем, а косвенно, влияя на уровень в крови инсулина -- гормона поджелудочной железы, необходимого для усвоения глюкозы клетками. Концентрация же инсулина натощак находится в довольно строгом соответствии с количеством массы жира в теле. Если увеличивается количество жира, то увеличивается и уровень инсулина, что влияет на соответствующий отдел гипоталамуса. В результате происходит серия реакций, приводящих к снижению массы жира и тем самым к уменьшению концентрации инсулина. Это гипоталамическое устройство условно можно обозначить как "стратегический центр аппетита", поскольку с его помощью контролируются длительно протекающие процессы поддержания веса тела. Второе гипоталамическое устройство корректирует уровень в крови энергетических веществ, прежде всего глюкозы, а также, возможно, и жирных кислот. Этот регулятор как бы отмеривает необходимое количество топлива, то есть пищевых энергетических веществ, но не в расчете на длительный срок, как первый регулятор, а в каждый данный момент приема пищи. Поэтому второе устройство условно можно обозначить как "тактический центр аппетита". Рассмотрим, как в соответствии с представлениями классической медицины этот второй гипоталамический регулятор контролирует потребление пищи, Большинство исследователей считают, что в гипоталамусе аппетитом "ведают" два взаимосвязанных центра: пищевой центр и центр насыщения. Если пища не поступает, в крови снижается содержание глюкозы и пищевой центр побуждает организм к еде. В результате приема пищи в крови увеличивается содержание глюкозы, а также инсулина. При достижении определенного уровня концентрации глюкоза стимулирует центр насыщения, что приводит к возникновению чувства насыщения. Параллельно из центра насыщения идут сигналы, вызывающие торможение активности пищевого центра Классическая медицина, однако, установив, каким образом регулируется аппетит, не дала ответа на вопрос, почему с возрастом у человека происходит нарушение регуляции аппетита. Имевшиеся в распоряжении экспериментальные данные говорили, что повышение аппетита возникает при разрушении центра насыщения. Но трудно представить, что к 30 годам начинается разрушение центра насыщения. А накопление жира в теле тем не менее к этому времени уже происходит. Нельзя было думать и об атеросклеротическом поражении центра насыщения, так как в глубокой старости, когда атеросклероз особенно выражен, аппетит начинает снижаться. Наконец, было вполне очевидным, что аппетит может меняться в любом возрасте в зависимости от многих, условий -- при волнении или страхе или, напротив, в благоприятной обстановке. В чем же в таком случае заключается причина утраты гипоталамического контроля аппетита по мере старения? Берусь утверждать, что с возрастом снижается чувствительность гипоталамического центра аппетита к действию глюкозы, или, иными словами, повышается порог чувствительности центра насыщения к стимулирующему действию глюкозы. Действительно, с годами одно и то же количество сахара в пище вызывает все более значительный подъем уровня глюкозы в крови. Так как глюкоза, активизируя центр насыщения, в конечном итоге подавляет аппетит, то чем больше ее в крови после еды, тем быстрее должно, казалось бы, происходить торможение аппетита. Иными словами, по мере старения насыщение во время еды должно было бы наступать быстрее, чем это имело место в молодые годы. Однако с возрастом вес тела увеличивается. Это заставляет признать, что центр насыщения, напротив, становится менее чувствительным к повышению уровня глюкозы. Поэтому-то в среднем возрасте человек успевает съесть больше, чем необходимо, пищи до того, как сработает гипоталамический регулятор аппетита. В "крови соответственно накапливается избыток глюкозы, которая с годами хуже, чем прежде, усваивается мышечной тканью. Лишняя глюкоза попадая в жировую ткань, превращается в жир. В этих условиях, конечно, должен был бы предотвратить развитие ожирения стратегический центр аппетита. Ведь накопление жира, обусловленное неправильной работой тактического центра аппетита, и связанное с этим увеличение в крови уровня инсулина должно было бы воздействовать на стратегический центр и вызвать перестройку "пищевого поведения" таким образом, чтобы вес тела снизился до исходного уровня. В некоторых случаях, как видно, так оно и происходит. Если в молодом возрасте у человека под влиянием переедания вес тела увеличился, то стоит ввести ограничение в еде, как довольно быстро возвращается прежняя форма. Замечено также, что и по мере старения прибавка в весе тела идет не постоянно, а как бы "рывками": есть периоды, когда вес тела увеличивается, затем в течение какого-то времени остается стабильным. Все происходит так, как будто меняется точка отсчета, или, точнее, порог чувствительности регулятора в стратегическом центре аппетита. Таким образом, можно предполагать, что как в тактическом, так и в стратегическом центре аппетита с возрастом происходит одно и то же явление: повышение порога чувствительности к регулирующим сигналам, направленным на поддержание стабильности в энергетической системе организма. Здесь есть одна интересная особенность. Если можно так выразиться, человек с детства привыкает доверять своему чувству аппетита. В молодости такое доверие оправданно: центр насыщения и стратегический центр аппетита тонко реагируют на изменения концентрации глюкозы и инсулина в крови, обеспечивая потребность развития, а затем и определенную стабильность организма. А вот с годами центр аппетита начинает вводить нас в заблуждение... В настоящее время стали ясны и некоторые детали гипоталамического механизма регуляции аппетита. Искусственное снижение в гипоталамусе концентрации передатчиков нервного сигнала -- медиаторов -- вызывает в эксперименте у животных и у человека повышение аппетита. Но по мере старения снижение уровня медиаторов происходит закономерно (см. дальше). Интересно вот еще что. Обычно считается, что при отрицательных эмоциях наступает похудение, связанное в значительной степени с понижением аппетита и уменьшением количества съедаемой пищи. В целом это наблюдение соответствует действительности, и чаще всего такая реакция свойственна молодому возрасту. Но случается и так, что у лиц среднего возраста в ответ на длительные отрицательные эмоции повышается аппетит, а иногда -- и вес тела. Как же это может быть объяснено? С возрастом концентрация в гипоталамусе нейромедиаторов снижается. Состояние стресса также вызывает снижение уровня медиаторов в гипоталамусе. Причем регуляция связанного со стрессом поведения контролируется гипоталамическими центрами, имеющими отношение и к регуляции аппетита. Когда влияние возраста и стресса, суммируясь, вызывает значительное уменьшение содержания медиаторов, может возникнуть острое чувство голода. Повышение аппетита в ответ на волнения -- это показатель определенного неблагополучия, или, точнее, показатель степени интенсивности возрастных нарушений. А вот ребенок, увлеченный игрой, может не почувствовать в положенное время голода: положительные эмоции, создавая состояние антистресса, обеспечивают высокий уровень нейромедиаторов в гипоталамусе и соответственно снижение аппетита. Зависимость аппетита от настроения -- лишь одна сторона взаимоотношений. С другой стороны, и настроение может зависеть от поступления пищи. Давно известная шутка, не отличающаяся особым изяществом: путь к сердцу мужчины лежит через его желудок. Этот тезис основан на интуитивном наблюдении истинно физиологических процессов. Если человек съедает свою порцию мяса, то в крови увеличивается концентрация аминокислот -- строительных элементов белка, и среди них аминокислоты -- триптофана. А из триптофана в мозге синтезируется серотонин -- медиатор-передатчик нервного импульса в гипоталамусе. Серотонин контролирует настроение, и соответственно повышение его концентрации физиологически лежит в основе повышения настроения. Но и углеводы -- кто этого не знает -- тоже могут действовать как фактор, улучшающий настроение. Под влиянием глюкозы, в которую превращаются все сладости, как бы кулинарно причудливо они ни оформлялись, повышается продукция инсулина. Этот же гормон, подобно тому как он помогает глюкозе проникнуть внутрь клеток, способствует поступлению триптофана в мозг, то есть опять-таки повышает уровень серотонина в гипоталамусе. Так что добродушие гурманов, о котором часто писали, это черта характера не только врожденная, но и воспитанная вкусной пищей. В этой взаимосвязи не было бы ничего плохого для гурмана, если бы избыток инсулина не приводил к ожирению и если бы с годами нарушение в регуляции аппетита не влекло за собой все более запоздалой реакции удовлетворения и тем самым искаженной оценки того, что организму действительно необходимо. Таким образом, возрастное повышение веса тела -- это симптом нарушения аппетита, обусловленного повышением порога чувствительности гипоталамических центров к регулирующему влиянию пищи и инсулина. Возрастное ожирение с этой точки зрения столь же законно, как и развитие климакса. Но оно, как и климакс, показатель утраты саморегуляции и стабильности, причем утраты, происходящей в самой главной системе организма -- системе энергетического обеспечения. Что особенно печально, с возрастом не только начинает работать неточно "взвешивающее устройство" энергетического гомеостата, но и в самом этом гомеостате происходят тоже регуляторные нарушения, значительно увеличивающие ошибку пищевых весов. Энергетика организма -- это основа его существования и вместе с тем сила, которая, выйдя из-под регуляторного контроля, прежде всего ответственна за формирование главных болезней человека. Вот почему так важно разобраться в тонкостях, связанных с деятельностью системы саморегуляции потока энергии. К этому мы сейчас и перейдем. Жиры сгорают в пламени углеводов, но углеводы не горят а пламени жиров. Глава 9. Нормальная болезнь энергетического гомеостата -- ожирение Принято считать, что древний человек питался исключительно углеводами и что всеядность, приведшая к употреблению мяса и животного жира, была решающим шагом к его современным болезням. Это утверждение не совсем точно. Ни древний человек, ни человекообразные обезьяны, вопреки существующему мнению, никогда не питались исключительно углеводами. Их организм всегда использовал как источник энергии и углеводы и животные жиры. Древний человек действительно получал энергию из растительной пищи, используя как энергетический материал главным образом глюкозу, а также другой углевод -- фруктозу. Но независимо от исходного пищевого продукта, если в крови появляется избыток глюкозы, то эта глюкоза в жировой ткани при помощи гормона инсулина превращается в жир. Это происходит по той же схеме, по которой при кормлении домашней птицы зерном добиваются у нее накопления жира. Если растительные жиры, содержащиеся в растительной пище, относятся с химической точки зрения к ненасыщенным жирам, то из глюкозы в человеческом организме образуются полутвердые и твердые, или насыщенные, жиры (такие же жиры мы получаем из животного организма). Когда пища в организм не поступает, на пример ночью, то именно эти жиры и служат источником, из которого извлекается энергия. Между двумя источниками энергии -- углеводами и животными жирами существует антагонизм, поддерживать который прежде всего и призван энергетический гомеостат. Глюкоза и жирные кислоты в этой системе одновременно выступают и как топливо, и как факторы регуляции. Два других главных элемента энергетического гомеостата -- это гормоны: инсулин и гормон роста. Инсулин необходим для усвоения глюкозы. Энергетическая система устроена так, что глюкоза стимулирует поступление инсулина в кровь из поджелудочной железы, то есть сама глюкоза создает условия для своего сгорания в тканях. Гормон роста действует в энергетическом гомеостате как жиромобилизующий гормон. Под влиянием гормона роста из жировых депо увеличивается поступление жирных кислот -- второго вида топлива. Когда в организм поступает пища, нет необходимости использовать жир, накопленный про запас в собственном теле. Использование резервного жира в это время ограничено или даже прекращено, что достигается следующим образом. Повышение в крови концентрации глюкозы, обусловленное поступлением пищи, влияет на рецепторы глюкозы в гипоталамусе. Это приводит к снижению поступления гормона роста из гипофиза. Так как гормон роста обладает мощным жиромобилизующим действием, то уменьшение его концентрации уменьшает в крови уровень жирных кислот. Одновременно глюкоза стимулирует выделение инсулина из поджелудочной железы. Инсулин необходим для сгорания глюкозы в тканях, и поэтому естественно, он обладает свойством тормозить мобилизацию жира из жировых депо. Это совмещенное влияние -- уменьшение в крови концентрации гормона роста и повышение концентрации инсулина -- значительно снижает поступление жирных кислот в кровь. В этих условиях глюкоза становится основным энергетическим материалом, используемым организмом. Таким образом, после приема пищи создаются условия для использования энергетических материалов пищи и cooтветственнo сохраняются запасы резервного жира. Более того, запасы жира даже пополняются: если в крови накапливается избыток глюкозы (например, из-за снижения ее использования в мышцах), то этот избыток под влиянием того же инсулина превращается в жир. Тип энергетического обеспечения полностью изменяется в условиях голодания, например ночью, когда пища в организм не поступает. Система энергетического гомеостата и в этих условиях ведет себя очень "разумно": в качестве топлива используется жир, запасы которого в жировых депо намного выше, чем запасы глюкозы, заключенной "в животном крахмале" -- гликогене. А глюкоза сохраняется для нервной ткани, для которой она составляет основной источник энергии. При этом даже "учитывается", что запасы глюкозы в организме ограничены и в условиях голодания усиливается механизм, обеспечивающий производство глюкозы из белка. Все эти изменения в энергетике осуществляются следующим образом. Когда в организм пища не поступает, снижается концентрация глюкозы в крови. В результате снижается также уровень инсулина, продукция которого находится в зависимости от концентрации глюкозы. В соответствии с устройством энергетического гомеостата снижение концентрации в крови глюкозы и инсулина снимает тормоз с центра гипоталамуса, контролирующего выделение гипофизом гормона роста. Соответственно уровень гормона роста в крови повышается, и вследствие этого усиливается мобилизация жира из жировых депо. Так как в условиях голодания снижено содержание в крови инсулина, то устраняется тормозное препятствие, оказываемое инсулином на мобилизацию жира, что увеличивает жиромобилизующее действие гормона роста. В результате уровень жирных кислот в крови возрастает. Жирные кислоты становятся главным энергетическим субстратом -- основным топливом, сжигаемым организмом. В отличие от глюкозы, которая для своего транспортирования в клетку через клеточную мембрану нуждается в помощи инсулина, поступление жирных кислот в мышечную клетку находится в прямой зависимости от их концентрации в крови. Это преимущество перед глюкозой усугубляется еще тем, что жирные кислоты препятствуют усвоению глюкозы мышечной тканью. Такой антагонизм крайне целесообразен: он обеспечивает в условиях голодания (когда запасы глюкозы в организме не пополняются) переключение потока глюкозы в направлении нервной ткани. Кроме того, гормон роста противодействует влиянию инсулина на усвоение глюкозы. Этот антиинсулиновый эффект гормона роста еще больше затрудняет использование глюкозы мышечной тканью. Поэтому когда в условиях голодания снижается в крови уровень глюкозы и освобожденный от "глюкозного тормоза" гормон роста переключает организм на использование жира, одновременно благодаря двойному антагонизму: между жирными кислотами и глюкозой, с одной стороны, и между гормоном роста и инсулином -- с другой, создаются оптимальные условия для сжигания жирных кислот в мышечной ткани. И соответственно условия, обеспечивающие снижение использования глюкозы. Все эти изменения можно выразить следующей формулой: углеводы не сгорают в пламени жиров. Более того, когда происходит сдвиг в сторону усиленного использования жирных кислот, то сами жирные кислоты усиливают механизм воспроизводства глюкозы из белка, подчиняя деятельность организма задаче обеспечения нервной ткани энергией. Итак, в организме существует два способа энергетического обеспечения. При первом способе, который условно можно назвать дневным, энергетические материалы поступают с пищей, в то же время выключая использование резервного жира. Источником энергии здесь служит глюкоза и в меньшей степени -- пищевой жир. Совместное использование двух энергетических субстратов облегчается тем, что жиры сгорают в пламени углеводов. При втором способе энергетического обеспечения организма, который условно можно назвать ночным, основным источником энергии становятся жирные кислоты. Правильное чередование типов обеспечения энергетическим материалом в норме достигается за счет влияния пищи на систему четырехкомпонентного энергетического гомеостата, в котором главными регулирующими факторами являются глюкоза и инсулин, жирные кислоты и гормон роста* Однако при ожирении и в процессе нормального старения механизм переключения энергетического гомеостата нарушается, и организм независимо от своих истинных потребностей переходит на жировой путь обеспечения энергией. Отсюда следует, что в энергетическом гомеостате с увеличением возраста происходят такие же изменения, какие наблюдаются и в адаптационном, и в репродуктивном гомеостате. Но вот что может показаться странным. Если система плохо тормозится, то есть если повышение концентрации глюкозы в крови не оказывает нормального тормозящего влияния на секрецию гормона роста, то уровень его в крови должен увеличиться. Однако, напротив, у лиц среднего возраста, у которых гипоталамический порог повышен, концентрация гормона роста в крови отчетливо ниже, чем у молодых. Долгое время это противоречие оставалось без объяснения, пока различные исследователи не выяснили, что ожирению свойственно понижение уровня гормона роста в крови. В дальнейшем стало ясно, что именно жирные кислоты, концентрация которых в крови при ожирении увеличена, вызывают снижение уровня гормона роста. Этот вывод подтверждается следующим образом; Человеку вводится никотиновая, кислота -- витамин, который тормозит мобилизацию жира, и снижение в крови концентрации жирных кислот сопровождается острым повышением уровня гормона роста. Существование: "жирового тормоза", основанного на способности жирных кислот тормозить выделение из гипофиза гормона роста, весьма целесообразно. Действительно, если учитывать, что поступление пищи в организм должно затормозить использование резервного жира, то не только углеводы (глюкоза), но и жир (жирные кислоты) должен в соответствии с этим правилом угнетать выделение жиромобилизующего гормона роста. Иными словами, после поступления в организм пищи механизм мобилизации жира должен выключаться. Однако в действии этого целесообразного механизма имеется важное ограничение, почему-то не привлекшее к себе ранее внимания. В детском возрасте наблюдается одновременно высокий уровень в крови и жирных кислот, и гормона роста, как будто никакого "жирового тормоза" вообще не существует. Эту парадоксальную ситуацию можно объяснить, следующим образом. Сочетание повышенной концентрации в крови и гормона роста, и жирных кислот противоречит их взаимоотношениям, определяемым механизмом отрицательной обратной связи: ведь высокий уровень жирных кислот в крови должен приводить путем воздействия на гипоталамус к снижению уровня в крови гормона роста. Поэтому одновременное повышение уровня и гормона роста, и жирных кислот может происходить только в том случае, если повышен порог чувствительности гипоталамуса к тормозящему влиянию жирных кислот. Иными словами, в период детства в системе гипоталамус -- гормон роста -- жирные кислоты наблюдается явление, которое в других главных гомеостатических системах возникает лишь в процессе старения. Действительно, в адаптационной и репродуктивной системах с возрастом происходит повышение гипоталамического порога. Такое же явление имеет место и в энергетическом гомеостате в системе, .контролирующей взаимоотношения между гормоном роста и глюкозой. Но в этом же энергетическом гомеостате по мере старения наблюдается и нечто полностью противоположное, а именно возрастное понижение гипоталамического порога чувствительности к тормозящему действию жирных кислот. Это и приводит к тому, что по мере старения, когда жирные кислоты становятся главным источником энергии, концентрация гормона роста в крови снижается. Подведем некоторые итоги. В системе энергетического гомеостата по мере старения происходят два независимых изменения регуляции: гипоталамический порог чувствительности к тормозящему действию глюкозы повышается, тогда как к жирным кислотам -- падает. Но если в природе что-либо существует, то это всегда имеет основания. Чем могут быть вызваны разнонаправленные изменения в одной и той же столь согласованно работающей энергетической системе? Для процесса роста организма необходимы и гормон роста, и жирные кислоты, которые энергетически обеспечивают потребности роста. Таким образом, то, что в детстве жирные кислоты не обладают сильным тормозящим влиянием на продукцию гормона роста, как раз и необходимо для роста организма. С другой стороны, хорошо работающий в детстве глюкозный тормоз регулирует поступление энергетических веществ через центр аппетита и тем самым распределение топлива в системе энергетического гомеостата, включая то дневной, то ночной тип энергетического обеспечения. Пока глюкозный тормоз функционирует правильно, а это имеет место в детстве и юности, переключение потоков энергии, добываемой то из глюкозы, то из жира, хорошо контролируется. Когда же происходит снижение эффективности глюкозного тормоза, вызванное возрастным повышением гипоталамического порога, развитие ожирения становится неизбежным в силу свойств, присущих энергетическому гомеостату. Иными словами, даже если бы не происходило возрастного нарушения в регуляции аппетита, то и тогда бы при нормальном, сбалансированном притоке энергетических продуктов одно лишь изменение в системе гипоталамус -- гормон роста -- глюкоза должно было бы приводить постепенно к переключению энергетического гомеостата на преимущественно жировой способ обеспечения энергией. Если же при этом наблюдается хотя бы незначительное превышение прихода энергии над ее расходом (вследствие возрастных нарушений в регуляции аппетита), это будет приводить к развитию ожирения. Так оно в действительности и происходит. В этом смысле ожирение -- это нормальная болезнь, которая всегда возникает в процессе старения. Подобно тому как климакс является естественным следствием возрастных изменений регуляции в репродуктивном гомеостате (глава 7), а гиперадаптоз -- в адаптационном гомеостате (глава 6), возрастное ожирение -- это нормальное проявление возрастных изменений в системе энергетического гомеостата. Однако возрастное ожирение -- не только одна из ряда нормальных болезней. Роль ожирения в развитии других болезней чрезвычайно велика. Почему именно ожирение играет столь ответственную роль? Для того чтобы ответить на этот вопрос, надо сначала рассмотреть, почему ожирение, как только оно возникает, теряет "связь с прошлым" и становится самовоспроизводящим процессом, буквально "вечным двигателем" в системе формирования болезней старения. Ожирение -- не проблема века, а вечная проблема. Глава 10. Ожирение: болезнь болезней Прошло много веков, пока человек, познав некоторые закономерности природы, начал оказывать влияние на течение жизненных процессов. Самый поразительный пример такого влияния -- увеличение продолжительности жизни, достигнутое благодаря цивилизации. Отдельные индивидуумы и в древности жили достаточно долго. Однако средняя длительность жизни в течение сотен лет оставалась поразительно низкой. Например, во Франции в XIV веке она составляла всего 20 лет. В тот период невозможно было бы понять, что является истинной причиной смерти человека, ибо смерть в основном наступала от внешних причин, подобно тому как в дикой природе это наблюдается и в настоящее время. По мере развития цивилизации основные причины смерти менялись. В средние века с возникновением крупных городов приобрели катастрофический характер массовые эпидемии инфекционных болезней. Миллионы людей гибли от эпидемий чумы или холеры, и только развитию науки оказалось под силу ограничить это бедствие. Скученность и бедность подавляющей части населения в растущих городах на многие годы выдвинули на одно из первых мест смерть от социальных причин. Бичом человечества надолго сделался туберкулез. Строго говоря, туберкулез -- инфекция, а смерть от него -- это смерть от внешней причины. И вместе с тем туберкулез настолько зависит от социальных факторов, что. это, пожалуй, первая крупная болезнь современной цивилизации. Со временем значение таких болезней все более возрастало. В их основе уже не лежали собственно инфекции. Но вместе с тем массовость этих болезней позволила многим ученым выдвинуть положение об эпидемиологическом характере болезней цивилизации. И постепенно из многих сотен известных болезней всего лишь 10 стали причиной смерти каждых 85 человек из 100 в среднем и пожилом возрасте. Перечислим главные из них еще раз. Это: ожирение, гипертоническая болезнь, метаболическая иммунодепрессия, атеросклероз, аутоиммунные болезни, психическая депрессия и рак. Эти болезни, конечно, не возникли лишь в новейшее время. В точном смысле слова они вообще не являются болезнями цивилизации. Широко известна фотография, воспроизводящая древнюю фреску, на которой изображен тучный этруск, живший две с половиной тысячи лет тому назад. Но и этот пример лишь весьма условно характеризует биологическое, а не социальное происхождение ожирения. Ведь по мере увеличения возраста накопление жира происходит не только у человека, но и у всех млекопитающих. И все-таки, если говорить о человеке, увеличение продолжительности жизни, достигнутое благодаря социальному прогрессу и цивилизации, отчетливо выявило эту тенденцию к увеличению массы жировой ткани с возрастом. То же можно сказать и в отношении многих других болезней, входящих в группу основных причин смерти современного человека. Многие считают, что в наши дни не столько увеличилась частота рака, сколько увеличилось число людей, доживающих до "ракового возраста", то есть до возраста, при котором начинается прогрессивное увеличение клинического проявления разнообразных видов рака. В целом это утверждение подкреплено многочисленными данными статистики, показывающей прямую зависимость между частотой рака и возрастом. Но вот что важно. У тучных вероятность развития рака, особенно некоторых его видов, выше, чем у людей с нормальным весом. Следовательно, у тучных паспортный возраст и биологический не вполне совпадают: организм как бы быстрее доживает до своего "ракового возраста". Ожирение также способствует развитию атеросклероза и сахарного диабета тучных. Оно же снижает устойчивость ко многим инфекциям, увеличивает риск осложнений при травме. Наконец, при гипертонической болезни, которая сама по себе не вызывается ожирением, часто наблюдается избыточный вес тела. Подобного рода данные привели к развитию новой отрасли знаний -- метаболической эпидемиологии, которая изучает влияние обмена веществ, и прежде всего ожирения, на развитие сахарного диабета, атеросклероза и рака. Почему же ожирение играет столь большую роль в развитии главных болезней человека? Почему борьба с ожирением, которая проводится все активнее, не дает быстрых и решительных результатов и проблема тучности сейчас остается такой же, если не более существенной, чем тогда, когда эта борьба только начиналась? Ответ не прост; но все же попытаемся его рассмотреть. Если ожирение развилось в процессе нормального старения, то есть по правилам, продиктованным законом отклонения гомеостаза, то его возникновение связано и с нарушением регуляции аппетита (глава 8), и с нарушением системы регуляции дневного и ночного типа энергетики (глава 9), и с гиперадаптозом (глава 6). Но в конечном итоге эти механизмы приводят к накоплению избыточного количества жира. Во взрослом состоянии число жировых клеток, как видно, постоянно. Поэтому с увеличением массы жира уже существующие жировые клетки начинают переполняться жиром. Накопление жира увеличивает объем жировой клетки и соответственно ее поверхность, а также снижает чувствительность жировой ткани к действию инсулина. Многочисленные исследования последнего времени показали: на мембране жировой клетки, переполненной жиром ( так же как и на мембране белых кровяных клеток и клеток печени при ожирении), уменьшено в несколько раз число рецепторов инсулина, а следовательно, снижена эффективность его действия. Организм отвечает на это дополнительным, компенсаторным увеличением продукции инсулина. На определенных стадиях развития ожирения это повышение уровня инсулина проявляется очень своеобразно. Инсулин не только превращает глюкозу в жир, но также тормозит использование жира. В данном случае как гормон дневного типа энергетики инсулин препятствует включению ночного типа энергетики. Поэтому часто тучный человек, несмотря на запасы жира, испытывает натощак острое чувство голода. Благодаря избытку инсулина организм ведет себя как небезызвестный Гобсек в заботах накопительства: он накапливает жир, но не хочет его использовать. Однако "накачка" жировых клеток жиром не может быть бесконечной. Когда жировые клетки сверх меры перегружаются жиром, они начинают его отдавать организму в виде топлива -- жирных кислот. Действительно, хотя избыток инсулина, свойственный ожирению, препятствует мобилизации жира, все же при ожирении концентрация в крови жирных кислот возрастает. Значит, преодолевая противодействие инсулина, жировые клетки в большем, чем в норме, количестве отдают жирные кислоты в кровь. А из крови жирные кислоты очень быстро уносятся в ткани, где используются как топливо. Всего 4--6 минут циркулируют жирные кислоты в крови, прежде чем попасть в клетки. В соответствии с антагонизмом между дневным и ночным типом энергетического обеспечения повышенная утилизация жирных кислот создает "жировую преграду" на пути утилизации глюкозы. Поэтому и дневной тип энергетики у тучных лиц не функционирует должным образом. Глюкоза крови, встречая в мышечной ткани препятствие в виде "жировой преграды", устремляется в жировую ткань, где превращается под влиянием инсулина в жир. Вот почему при ожирении энергия и днем черпается организмом из жирных кислот. В организме создается своеобразный "перевалочный пункт", в котором глюкоза сначала превращается в жир, а затем уже жирные кислоты расходуются для обеспечения организма энергией. В результате организм постепенно переходит на жировой тип энергетики. Жир горит в топке организма не только ночью, но и днем. Поэтому когда с пищей в организм попадают углеводы (глюкоза), они в условиях жировой энергетики способствуют накоплению жировых отложений, что, в свою очередь, поддерживает жировую энергетику, и т. д. Так создается порочный круг обмена, стабилизирующий в организме ожирение. Одновременно включается второй стабилизатор ожирения. Избыточное поступление жирных кислот, которые как бы из переполненного глиняного сосуда через его поры просачиваются в кровь вызывает снижение в крови концентрации гормона роста Физиологическое значение такого механизма понятно. Если энергетические потребности осуществляются за счет повышения концентрации жирных кислот, то наличие высокого уровня в крови жиромобилизующего фактора -- гормона роста - становится излишним и "жировой тормоз" поэтому устраняет действие этого фактора. Но вспомним, что именно повышение в крови уровня гормона роста является первым шагом на пути к развитию ожирения. Поэтому, казалось бы, снижение концентрации гормона