скоординированная и четко управляемая, позволяет некоторым современным животным перемещаться со скоростью в несколько десятков км/час.
   Другой важной подсистемой организма является подсистема пищеварения. Она включает в себя ряд органов, где регулярно протекают процессы размельчения органических соединений подсистемных образований организмов I-го поколения до такого состояния, когда они могут быть использованы в качестве составных элементов в синтезируемых гетеротрофных клетках различных органов подсистем рассматриваемого нами организма. Регулярность указаных процессов определяется потребостью отдельных подсистем в замене в их фн. ячейках отфункционировавших фщ. единиц на новые. Наряду с подсистемой пищеварения функционирует также подсистема выделения. Через ее органы из организма удаляются непотребовавшиеся элементы, имевшиеся в органических соединениях пищи, а также элементы распада отфункционировавших фщ. единиц большинства подсистем организма.
   Постоянно функционирующая подсистема дыхания служит для обеспечения газообмена протекающих в различных органах и тканях биохимических реакций. В процессе газообмена происходит постоянный подвод требующегося для окислительно-восстановительных реакций кислорода, а также отвод одного из продуктов распада всех органических соединений - углекислого газа.
   Аккумулятивная подсистема организма включает в себя органы, фн. ячейки которых заполняются определенным запасом большинства элементов, необходимых для построения фщ. клеток других подсистем, удлиняя тем самым период автономного функционирования организма в целом. В органах данной подсистемы скапливается также ряд органических соединений, последующее расщепление которых может послужить дополнительным источником энергии. Аккумулятивная подсистема имеет очень важное значение в жизнедеятельности организмов животного мира. С ее помощью организм имеет возможность увеличить интервалы между приемами пищи, нормально функционируя в указанные перерывы. Это особенно важно для животных, ареал обитания которых находится в пустынной местности, а также в зимнее время года.
   Подсистема крово- и лимфообращения обеспечивает постоянную надежную транспортировку всех необходимых для протекающих в клетках биохимических реакций компонентов и отвод элементов, образовавшихся в процессе распада отфункционировавших единиц. Кровь представляет собой имеющую свойства жидкости структуру фн. ячеек, заполненных соответствующими фщ. единицами. Поэтому в крови всегда содержится полный перечень потребляемых в клетках при их синтезировании элементов, и они в необходимый момент перемещаются из фн. ячеек крови в соответствующие фн. ячейки синтезируемой клетки. Освободившиеся фн. ячейки крови тут же заполняются новыми фщ. единицами из аккумулятивной подсистемы фн. ячеек или же непосредственно из подсистемы пищеварения. Удержание в фн. ячейках крови соответствующих элементов и соединений, а также их перемещение в фн. ячейки синтезируемых клеток имеет биоэлектрическую основу.
   Ввиду того, что все биохимические реакции в клетках протекают при строго заданной температуре, в организмах II-го поколения (у теплокровных животных - млекопитающих) существует более совершенная, чем у I-го поколения, подсистема терморегулирования, обеспечивающая постоянство внутренней температуры тела, несмотря на любые температурные колебания внешней среды. Порой эти колебания достигают 70oC.
   Из-за большой сложности построения и функционирования системы организмов II-го поколения, ей потребовалась надежная подсистема самосохранения, или защитная подсистема, зачатки которой мы можем наблюдать уже у организмов I-го поколения. Указанная подсистема включает специальные органы и фн. алгоритмы как внешней, так и внутренней самозащиты. В частности, внутренняя самозащита направлена, в основном, против проникающих в различные органы организмов чужеродных образований, которые подсистема самозащиты старается разрушить и вывести за пределы системы. Интересен один из способов внутренней самозащиты, основанный на принципе постоянства температуры для протекающих в биосистемах реакций. Исходя из того, что вторгнувшиеся микроорганизмы (например, вирусы) реакционно более активны, поскольку практически не имеют аккумулятивной подсистемы, и их системная организация в большей части менее приспособлена к колебанию температур из-за существующей разности фн. масс, организм в целях самозащиты через подсистему терморегулирования повышает во всей своей системе общую температуру, сознательно идя на риск временного нарушения своих отдельных биореакций. Однако вызванные этим нарушения в инородных микросистемах значительно серьезнее, вследствие чего они погибают или резко снижают свою активность, после чего и выводятся за пределы системы организма, в то время как подсистемой терморегулирования вновь восстанавливается характерный для данного организма температурный режим.
   Организмам II-го поколения, как известно, приходится постоянно перемещаться в поисках пищи по суше, воде или воздуху. Для обеспечения безопасного передвижения, а также более продуктивных поисков пищи в системах этих организмов получила широкое развитие подсистема восприятия, поиска и ориентации. Она включает в себя органы зрения, слуха и обоняния. С их помощью организмы легко ориентируются в пространстве и более эффективно ведут поиск потребляемых частей организмов I-го поколения. Указанные органы участвуют также в алгоритах функционирования подсистемы внешней самозащиты.
   Среди прочих подсистем организмов II-го поколения следует выделить три наиболее важных. Одной из них стала выделившаяся подсистема передачи раздражимости, или возбуждения. Для перемещающегося по субстрату организма в условиях быстро меняющейся ситуации потребовалась более ускоренная передача соответствующих сигналов от одного органа другому. Вследствие этого передача сигналов в организмах II-го поколения стала носить целиком биоэлектрическую основу, а выделившаяся подсистема передачи развилась в центральную нервную подсистему (ЦНП). Входящие в эту подсистему клетки отличаются особенно хорошей электропроводимостью, в силу чего в них постоянно циркулируют так называемые токи покоя и токи действия. При наличии какого-либо раздражителя происходит возбуждение данного участка ткани, в связи с чем возникает ток действия. Возбужденный участок ткани приобретает отрицательный электрический заряд по отношению к любому невозбужденному ее участку, после чего биоэлектрический потенциал передается согласно имеющемуся алгоритму в соответствующий орган системы, при этом скорость передачи сигнала благодаря эволюции постепенно возросла до 120 м/сек. Единая ЦНП организмов II-го поколения приняла на себя функцию координирования фн. деятельности практически всех подсистем организма, являясь таким образом основой более усовершенствованной, чем у организмов I-го поколения первой сигнальной подсистемы, а вместе с ней и своеобразной духовности организмов. Дальнейшая эволюция первой сигнальной подсистемы организма протекала по пути установления и закрепления так называемых рефлекторных дуг, которые составляли определенную цепочку фн. ячеек, заполненных соответствующими нервными клетками. В процессе формирования ЦНП ее отдельные части все более функционально дифференцировались, образуя спинной мозг, головной мозг, вегетативную нервную подсистему. Отличительной чертой нервных клеток является то, что они, в отличие от других, практически не имеют способности к делению и существуют в течение всей жизни организма, в силу чего установившаяся один раз рефлекторная дуга при определенных условиях существует до момента распада всей системы организма. Первая сигнальная подсистема включает в себя рефлекторные дуги, передающие возбуждения как от рецепторов, реагирующих на внешние раздражители, так и от рецепторов внутренних раздражений. Структура устойчивых рефлекторных дуг генетически записывается и воспроизводится в последующих поколениях, образуя перечень так называемых безусловных рефлексов. В итоге нервная подсистема организма приобрела наибольшее значение в осуществлении регулирования и четкой координации фн. деятельности различных подсистем целостного организма.
   В процессе существования организмов II-го поколения стало складываться все больше ситуаций, при которых на раздражение отдельных рецепторов организму целесообразнее было реагировать совершенно по разному. Так, например, сытое животное при виде новых порций пищи или воды никак не реагирует на них, поскольку его первая сигнальная подсистема наряду с получением сигнала от рецептора глаза одновременно получает также сигнал и от рецептора аккумулятивной подсистемы организма и этот сигнал по своей раздражающей силе на какое-то время оказывается сильнее первого. Для анализа постоянно поступающих в нее сигналов о различной силы раздражениях многочисленных рецепторов на стыках центров преломления рефлекторных дуг в недрах ЦНП стали формироваться так называемые центры анализа и обработки раздражающих сигналов, на которые легла функция координации хода последующих реакций на большинство раздражений, передаваемых от различных рецепторов. По мере эволюции организмов II-го поколения эти аналитические центры первой сигнальной подсистемы все более локализовывались в структурах головного мозга, а учитывая, что функционально организмы II-го поколения постепенно все более разнились между собой, аналогичную все большую разницу приобретали и аналитические фн. центры ЦНП. Таким образом, со временем становилось все более очевидным, что каждая вновь появляющаяся функция организмов II-го поколения получала свой, обслуживающий только ее аналитический центр головного мозга ЦНП, то есть актуальная область движения Материи в качестве-времени () на новом этапе ее Эволюции все более перемещалась в структуры головного мозга организма.
   Еще одной важной подсистемой организмов II-го поколения стала подсистема генозаписи, которая помимо кодирования структурного развертывания всей системы организма, а также состава всех его фщ. единиц стала генетически записывать еще и рефлекторные связи дуг, и соотвествующие аналитические фн. центры сигнальной подсистемы ЦНП. Именно таким путем начал складываться генотип организмов. Вновь образовывавшиеся впоследствии рефлекторные дуги и аналитические фн. центры при закреплении их в качестве условных рефлексов составляли фенотип организма, после чего генетически записывались и передавались по наследству, входя уже наряду с ранее записанными рефлексами в генотип последующих поколений, соответственно пополняя его и все более развивая его духовность .
   Последней важной подсистемой организмов II-го поколения следует считать подсистему воспроизведения потомства, основанную на функциональном разделении всех организмов на два пола: мужские и женские особи. Каждый пол со временем приобретал все большую фн. специализацию, однако наибольшего отличия достигли органы подсистем, принимающие непосредственное участие в производстве потомства. Зарождение каждого организма начинается с момента соединения двух специализированных клеток - гамет, отдельно заимствованных от особей обоих полов. В каждой гамете имеется своя генетическая запись, заключенная в гаплоидном наборе нескольких десятков хромосом, при этом любое внутрихромосомное отклонение генома определенным образом отражается на формирующемся генофонде потомства. Развитие зародышей организмов млекопитающих первое время протекает в специальной подсистеме материнского организма под контролем его ЦНП, регулирующей прежде всего подвод соответствующих питательных элементов для заполнения фн. ячеек развертываемой структуры нового организма. После рождения детеныша и отделения его от материнской системы, снабжение нового организма питательными элементами материнским организмом осуществляется еще продолжительное время и они поступают в него в виде специального раствора (молока), вырабатываемого соответствующей фн. подсистемой организма женской особи. У организмов II-го поколения существуют также подсистемы воспроизведения потомства посредством выкладки яиц, представляющих собой зародыш в строго дозированной среде тщательно отобранных питательных элементов, которые он полностью использует в качестве фщ. единиц для фн. ячеек развертываемой структуры до определенного момента своего развития.
   Таким образом, морфологическая и физиологическая дифференциация подсистем организмов II-го поколения, протекавшая многие миллионы лет, отвечала потребностям движения Материи по ординате качества-времени (), являясь в то же время прямым следствием этого движения. Следует отметить, что в Развитии Материи данный вид движения к этому моменту стал окончательно доминирующим для рассматриваемой области Вселенной, в то время как движение в пространстве-времени все больше стало играть второстепенную вспомогательную роль.
   В процессе эволюции новые, высшие по своей организации группы организмов возникали путем ароморфозов, идиоадаптаций и дегенераций. На одном из этапов указанного процесса развития системной организации Материи появились представители организмов третьего поколения. К ним относятся организмы, использующие в качестве строительных полуфабрикатов при синтезировании своих фщ. единиц не неорганические вещества гумусового слоя и не органические соединения размельченных тканей отдельных органов растений, а значительно более сложные органические вещества тканей организмов II-го поколения. В результате этого, у плотоядных животных, как они впоследствии стали называться, отпала необходимость постоянно и в больших количествах потреблять отдельные органы разнообразных растений для того, чтобы заполнить фн. ячейки своих подсистем соответствующими фщ. единицами. Им стало достаточно овладеть одним из организмов II-го поколения, чтобы получить сразу в большом количестве разнообразие многих необходимых элементов, находящихся в фн. ячейках организма растительноядного животного и из которых они могли синтезировать фщ. единицы для подсистем своего организма. Начиная с этого времени необходимые элементы организм стал получать готовыми блоками (блок-питание), что вполне отвечало принципам построения материальных систем, предопределяющим использование в качестве фщ. единиц в структурах всех последующих ступеней организации устойчивых комплексов единиц предыдущих уровней.
   В системной организации организмов III-го поколения произошло меньше изменений по отношению к организмам II-го поколения, чем это было между поколениями II-м и I-м. Прежде всего значительно изменилась подсистема пищеварения, приспосабливаясь под новый вид питания, а также еще большую фн. значимость получила нервная подсистема. Среди организмов III-го поколения по уровню своего развития все больше стали выделяться наземные животные. В конечном итоге, все дальнейшее развитие животного мира стало сводиться, в основном, именно к последовательному усложнению у наземных организмов III-го поколения ЦНП, повышению интенсивности и эффективности ее использования, увеличению разнообразия спектра ее функций. Главным образом, это сказалось на системной организации головного мозга, который все больше становился специализированной подсистемой умножающихся аналитических фн. центров, объединяющих анализаторы и инициаторы большинства процессов, протекавших внутри организма, и некоторых - вне его.
   Несмотря на большое количество видов организмов всех трех поколений (а их только в настоящее время насчитывается на Земле около 0,5 млн. видов растений и 1,5 млн. - животных) и их фн. разнородность, на ординате качества-времени тем не менее все равно наступил момент, когда всего этого разнообразия стало недостаточно для обеспечения дальнейшего Развития Материи. Выход из этого мог быть, как и прежде, найден лишь в еще более сложной системной организации Материи путем создания очередного нового организационного уровня. Первые предпосылки перехода к нему начали возникать еще около 30 млн. лет назад, когда в лесах палеогена и неогена появились парапитеки - животные величиной с кошку, которые жили на деревьях и питались растениями и насекомыми. От парапитека произошли современные гиббоны и орангутаны и еще одна ветвь - вымершие древние обезьяны дриопитеки, которые дали три ветви, приведшие к шимпанзе, горилле и человеку. Чарльз Дарвин убедительно доказал, что человек представляет собой последнее, высокоорганизованное звено в цепи развития живых существ четырех поколений и имеет общих далеких предков с человекообразными обезьянами.
   Итак, результатом движения Материи по организационному уровню И следует считать создание наиболее развитых организмов - организмов IV-го поколения, к коим мы причисляем только человека, система организма которого в целом к тому времени достигла стабильного совершенства. Будучи производной системой, вобравшей в себя все лучшее от организмов II-го и III-го поколений, человек получил в качестве генетического наследства набор всех тех подсистем, которые обеспечивали его существование и надежное функционирование в широком диапазоне окружающей среды. В качестве питания для заполнения фн. ячеек своих подсистем его организм все более приспосабливался к потреблению высокопитательных частей организмов I-го и II-го поколений. Так, в его рационе все большую долю стали занимать элементонасыщенные аккумулятивные подсистемы, формируемые вокруг семян у организмов I-го поколения (плоды, ягоды, фрукты) и различные части организмов II-го поколения. Части организмов III-го поколения, то есть плотоядных животных, человек в пищу практически не потреблял и не употребляет, как этого не делают и сами плотоядные животные, ввиду невозможности их использования для заполнения фн. ячеек подсистем его организма. Однако, опережающее развитие и специализацию в дальнейшем вплоть до наших дней в организме человека все более стала получать подсистема, регулирующая его высшую нервную деятельность, и в первую очередь, структура его головного мозга.
   И действительно, если у человекообразной обезьяны объем черепа составлял 600 см3, то уже у первого человека, австралопитека, жившего 3 - 5 млн. лет назад, объем мозга стал составлять 800 см3. У питекантропа - 1 млн. лет назад - объем черепа колебался уже в пределах 900--1100 см3. Благодаря прямохождению у обезьяноподобных предков человека руки освободились от необходимости поддерживать тело при передвижении и стали приобретать способность к другим разнообразным вспомогательным движениям. В силу этого у питекантропа хотя еще и не было приспособленных жилищ, но он уже умел пользоваться огнем и начал использовать различные предметы в качестве первых орудий. Помимо огромного преимущества, полученного в связи с освобождением передних конечностей, переход к прямохождению давал гоминидным предкам человека еще одно эволюционное приобретение: в результате изменения положения головы и глаз сильно возрос объем воспринимаемой ими зрительной информации, вследствие чего в огромной степени расширились возможности в выработке адекватного конкретной ситуации поведения.
   Если сам переход австралопитеков к прямохождению не мог осуществиться без сильного изменения фн. свойств их мозга, то совершенствование прямохождения и возросшие в связи с этим возможности ориентации во внешней среде так же, как и использование руки, в свою очередь повысили роль мозга как центральной подсистемы оценки информации о внешней среде и управляющей поведением всего организма. Параллельно с указанным процессом происходило анатомическое совершенствование руки как органа трудовой деятельности, вначале еще примитивной, но на последующих этапах эволюции превратившейся постепенно в орган сложной, сознательно программируемой деятельности.
   Несомненно, что имевший при этом место отбор опирался на оптимальный геномный набор, контролирующий анатомическое строение органов. Вместе с тем, адаптивное фн. использование всех анатомических завоеваний и их дальнейшее эволюционное совершенствование были уже невозможны без совершенствования мозга как центрального аппарата, управляющего новыми функциями тела, в силу чего основными критериями дальнейшего отбора все более становились структура и фн. свойства мозга. Поэтому именно мозг как подсистема управления положением и функционированием тела, деятельностью освобожденной руки, а также ориентации в конкретной жизненной ситуации и построения программ поведения стал являться с тех пор главнейшим фактором естественного отбора. Именно дальнейшее умножение и совершенствование его аналитических фн. центров, отражавшие приращение функций () в процессе Развития Материи в целом, стали основой в тот период времени ее интенсивного движения по следующему организационному уровню - К.


[ Оглавление ] [ Продолжение текста ]

Игорь Кондрашин - Диалектика Материи (Часть 3, окончание)

[ Оглавление ]

Игорь Кондрашин

Диалектика Материи

Диалектический генезис материальных систем
(окончание)

Уровень К

"Впоследствии естествознание включит в себя науку о человеке, точно также, как наука о человеке включит в себя естествознание - это будет одна наука."

К. Маркс

Итак, Человек, будучи наисложнейшей системой фщ. единиц, в которой постоянно протекают четко согласованные в пространстве и времени различного рода биохимические процессы, с определенного времени сам постепенно становился фщ. единицей в системной организации Материи более высокого уровня, заполняя там соответственные фн. ячейки. С этого момента наступила эпоха самоорганизующихся систем нового типа, хотя их зачатки мы можем наблюдать уже на организационном уровне И. Так, анализируя структуру биогеоценоза, мы видим, что лесные заросли представляют систему разнородных фн. ячеек, заполненных соответствующими фщ. единцами - деревьями, кустами и травами. Одни поколения растений, отфункционировав, отмирают и освободившиеся после них фн. ячейки заполняются другими, новыми растениями.

   У организмов II-го и III-го поколений также можно наблюдать примитивную системную организацию фн. ячеек нового уровня. К ней можно отнести поселения муравьев, рои пчел, стаи рыб, птиц, волков, обезьян, стада слонов, оленей, табуны лошадей и т.д. Вполне естественно, что все эти образования лишь условно можно назвать организациями, но тем не менее некоторые ее черты они все-таки имели. В основе этих формирований лежала дифференциация функций фн. ячеек, структурно связанных между собой и интегрированных в единую систему. Единая системная организация указанных формирований допускает лишь условное разделение указанных групп на фн. подгруппы, так как фактическое их разделение в большинстве случаев ведет к нарушению целостности системы. Так, если от роя пчел отделить фн. подгруппу, скажем, трутней, весь рой как единая система перестанет существовать. В стаях волков и обезьян мы обязательно обнаружим фн. ячейку вожака, которую всегда занимает самый сильный и выносливый член стаи, то есть, иными словами, обладающий наиболее развитым феногенотипом.
   Функционально различные ячейки систем нового типа имеют также свои, строго определенные фн. алгоритмы, которые находящаяся в ячейке фщ. единица обязана выполнять. Это - единый закон для всех системных образований Материи. Так, трутень не в состоянии выполнять в должной мере фн. алгоритмы рабочей пчелы, точно также как и рабочая пчела не способна выпонять функции трутня. Слабый вожак не сможет навести порядок внутри стаи, так же как и уберечь ее от внешних врагов и т.д.
   Как известно, одним из первых звеньев в системной организации уровня К явилась организация семьи, которую также можно считать и последним звеном в процессе развития по подуровню И. Из двуячеечной системы у организмов I-го поколения (первичная ячейка: материнское растение + вторичная ячейка: семена) семейная структура трансформировалась в трехячеечную у организмов II-го и III-го поколений (две первичные ячейки: отец и мать + вторичная ячейка: потомство). Время существования структуры семьи колеблется от продолжительности брачного периода до периода выращивания потомства. Полноценная семья существует до гибели одного из супругов. Нормальное функционирование семейного формирования может быть достигнуто лишь при условии заполнения всех ячеек его структуры соответствующими фщ. единицами. Отсутствие или несоответствие хотя бы одной из них является достаточным фактором, чтобы привести к распаду данного формирования.
   Каждая фн. ячейка, в том числе и семейная, имеет определенный набор фн. алгоритмов, которые заполняющая ее фщ. единица обязана выполнять. Ввиду этого существуют специфичные фн. алгоритмы отца, алгоритмы матери, а также алгоритмы потомства. У каждого вида организмов они различны, но во многом и схожи между собой. Их запись хранится на тех же цепочках ДНК-РНК и передается каждому последующему поколению в виде наследственного генома. Известно, что начиная с момента оплодотворения, яйцо в каждой из своих клеток в процессе размножения содержит всю совокупность генов, то есть всю родительскую информацию, необходимую организму для обеспечения своего роста, существования и функционирования. Но ни в один из моментов организму не нужна информация в полном объеме. Поэтому небольшие наборы генов, называемые транспозонами, способны покидать хромосомы, переходить из одной клетки в другую, перенося ту или иную информацию.
   Следующим решающим шагом в системной организации Материи по уровню К явилось создание новых фн. структур, фн. ячейки которых на определенные периоды времени заполняли уже такие суперсложные материальные образования, как человеческие индивидуумы, которые функционировали там, выполняя требуемые фн. алгоритмы. Такого рода системные образования мы назовем гиперорганизмами. Их появление могло произойти лишь вследствие объединения нескольких первобытных семей в одно стадо, а также дальнейшего умножения полифункциональности подсистемы человеческого организма - "мозг-рука", которая при помощи все новых орудий могла выполнять все новые фн. алгоритмы. Перемещаясь в фн. ячейку первобытного гиперорганизма, человек, как фщ. единица фн. системы - первобытной семьи, был вынужден временно покидать ее фн. ячейку, хотя в тот начальный период гиперорганизации это перемещение выглядело весьма условно. Таким образом, уже первая дифференциация функций человека стала причиной структурной интеграции первобытного стада. Возникшие в результате этого фн. группы нового типа представляли собой структуры фн. ячеек, имевших свои строго обозначенные алгоритмы, которые реализовывались заполнявшими их фщ. единицами. Итак, из всех организмов II-го, III-го и IV-го поколений стать фщ. единицей в гиперорганизмах мог лишь организм IV-го поколения, имевший наивысшую внутреннюю системную организацию, - человек.
   В качестве примера рассмотрим порядок функционирования фщ. единиц в группе охотников на мамонта. Ее структуру заполняли два-три десятка внешне одинаковых мужчин, вооруженных подобием копий и камнями. Все они невидимо занимали различные фн. ячейки в сложившейся группе и поэтому выполняемые ими алгоритмы не были одинаковыми. Вот один из них прибежал в стойбище и дал понять остальным, что он видел невдалеке мамонта или его свежие следы. Вот другой, вооружившись копьем, первым ринулся в указанном направлении, увлекая за собой других. Третий выбрал удобное место для атаки на животное и подал сигнал к нападению на него. Четвертый, после убийства мамонта, стал ловко разделывать его тушу. Пятый быстро развел костер и начал обжаривать мясо. Шестой, остававшийся в стойбище, за время отсутствия охотников смастерил для них несколько новых копий. Вернувшись с добычей в стойбище, люди из фн. ячеек группы охотников незримо переместились в свои семейные ячейки с тем, чтобы наутро из семейных ячеек также незримо вновь перейти в ячейки охотников. И так изо дня в день, из поколения в поколение.
   Из рассмотренного нами примера следует, что фщ. единица нового организационного уровня Материи помещается в соответствующую фн. ячейку лишь на период функционирования, покидая ее, как только необходимость пребывания там временно отпадает, и вновь заполняя ее при возникновении указанной необходимости, при этом перемещения из ячейки в ячейку стали носить характер регулярной повторяемости. С этой особенностью организационного уровня К перед Материей открывались широчайшие возможности по приросту функций (), то есть для создавания по мере ее движения по ординате качества-времени все увеличивающегося количества фн. ячеек при одновременном использовании значительно меньшего числа фщ. единиц - людей, которые в силу этого были вынуждены все более совершенствовать свою способность попеременно занимать несколько ячеек, тем самым повышая коэффициент своей персональной полифункциональности. Фн. алгоритмы каждой ячейки системных образований уровня К, то есть гиперорганизмов, фиксировались в то время в виде биохимической записи в колониях клеток головного мозга отдельных людей, способных осуществлять, удерживать и воспроизводить эту запись, представляющую собой межнейронные связи, по которым в определенный момент протекает биоток. В силу этого дальнеший естественный отбор фщ. единиц К шел по пути выделения людей, отличавшихся, при всех прочих равных параметрах организма, большим количеством нервных клеток в полушариях головного мозга, способных к формированию большего числа аналитических фн. центров сигнальной подсистемы. И хотя этот процесс протекал довольно медленно, тем не менее он дал свои результаты. Так, если у синантропов, существовавших 500 тыс. лет назад, объем черепа был лишь 850--1250 см3, то у неандертальцев, обитавших на Земле 150 тыс. лет назад, объем мозга составлял уже более 1400 см3, хотя извилин на нем было еще не так много. Неандертальцы питались мясной и растительной пищей, одевались в шкуры и жили группами по 50--100 человек. Человеческая семья в то время не могла существовать в одиночку, так как она быстро погибла бы, не сумев защитить себя от зверей, а также добыть себе достаточно пищи. Поэтому с первых шагов своего развития человек был коллективным животным. Благодаря же своей способности к полифункционированию лишь он смог стать универсальной фщ. единицей в ячейках гиперсистем уровня К.
   Постоянное участие в коллективных мероприятиях, будь то охота или защита от врагов, требовало от людей установления контакта между собой. Это следовало также и из закона построения развивающихся систем, согласно которому между ячейками любой структуры должна существовать определенного рода взаимосвязь. Со временем она постепенно оформилась и между фщ. единицами в структурах уровня К - людьми: вначале жестами, затем смысловой речью. Так, уже неандертальцы общались между собой жестами и членораздельными звуками. Все это, как известно, явилось зарождением второй сигнальной подсистемы, материальной основой которой служили все те же нейроны коры больших полушарий мозга. Здесь постоянно протекал незримый процесс установления новых межнейронных связей, формирования более сложных аналитико-инициаторных фн. центров, а также записи на ДНК-РНК клеток соответствующих биологических изменений подсистем организма. По мере своего развития II-ая сигнальная подсистема все активней проявляла свою фн. значимость в жизни людей. Теперь уже не вид мамонта, а лишь звуковой символ, обозначающий его, произнесенный одним из членов человеческого стада, стал достаточным раздражителем и приводил соответствующие подсистемы организмов охотников в возбуждение, после чего они устремлялись в направлении предполагаемого местонахождения зверя, то есть предмета раздражения. Зачатки II-ой сигнальной подсистемы существуют и у некоторых других животных, например, собак, кошек и т.д., но проявление ее в этих организмах носит очень ограниченный, примитивный и односторонний характер. Только у человека, с громаднейшим потенциалом его головного мозга, II-ая сигнальная подсистема получила свое дальнейшее фн. развитие, которое нашло отражение в фн. специализации подсистем слуха, речи и все тех же аналитико-инициаторных фн. центров головного мозга.
   Одновременно с развитием подсистем организма человека, как фщ. единицы уровня К, продолжали совершенствоваться фн. алгоритмы фн. ячеек гиперструктур, в частности, алгоритмы орудиепроизводства. Так, постепенно человек научился раскалывать камни на пластины и мастерить из них наконечники копий, ножи, скребки, проколки. Каждый новый алгоритм, несмотря на свою относительную простоту, требовал многие сотни лет на свою выработку. Однако в отличие от безусловных рефлексов, то есть алгоритмов фн. ячеек подуровня И, алгоритмы ячеек уровня К не передавались по наследству генетическим путем от поколения к поколению. Биологически передавалась лишь способность к повторению их биозаписи путем установления соответствующих межнейронных связей, формирования фн. центров и функционирования с их помощью. Поэтому индивидуум, умевший делать из камня нож, должен был показать, как это делается, своему соплеменнику или сыну, тот - своему и т.д.
   Все это происходило на фоне увеличения объема мозга и дальнейшего усложнения его организации. Опережающим темпом развивались те поля мозга, которые были связаны с осуществлением сенсорной и речедвигательной функций. Следует подчеркнуть, что возникновение и развитие речи оказались возможными лишь на основе сложного изменения анатомии голосового аппарата, увеличения объема гортани, изменения положения корня языка и уменьшения размера челюстей. Иными словами, речь, так же как и орудие трудовой деятельности - рука, сделавшие возможной и неизбежной социализацию первобытного человека, возникли на базе сложнейшего изменения телесной, анатомической организации предков первобытного человека. Продолжавшаяся в этой связи нагрузка на головной мозг привела к тому, что у первых современного типа людей - кроманьонцев, появившихся 30-40 тыс. лет назад, объем мозга достиг небывалой величины (1400--1600 см3), а его структура существенно усложнилась за счет еще большего увеличения числа аналитико-инициаторных фн. центров сигнальных подсистем, связанных с алгоритмированием трудовой деятельности и речи и способностью к абстрактному мышлению. В индивидуальном развитии мозга можно выделить появление гетерохроний, определяющих развитие филогенетически молодых областей за счет относительного уменьшения старых; череп стал приобретать все более человеческую форму. Так постепенно формировался Homo sapiens - "человек разумный".
   Кроманьонец не только по физическому облику, форме черепа и чертам лица вплотную приблизился к современному человеку; он демонстрирует уже подлинно человеческий интеллект - способность организовывать коллективные формы труда и жизни, умение строить жилище, изготовлять одежду, пользоваться высокоразвитой речью. Кроманьонец овладел искусством живописи, создал систему ритуалов поведения и зачатки первобытной религии, ему свойственны чувство сострадания к ближнему и забота о нем, то есть то, что мы называем альтруизмом.
   Все убыстрявшийся темп эволюционного процесса развития гоминид служит еще одним подтверждением найденной нами ранее зависимости движения Материи в качестве от движения во времени: . На всем пути эволюционного развития гоминидных предков человека и на первых этапах биологического формирования самого человека действовала, все усиливаясь, одна и та же главенствующая закономерность: совершенствование телесной, анатомической организации предъявляло все большие требования к регуляторной деятельности мозга и уже в силу этого ставило его под сильное давление отбора. Вместе с тем, мозг, совершенствуя организацию и функции тела, приобретал все большие возможности для оценки конкретной жизненной ситуации и выработки адекватной ей программы поведения, что делало объектом отбора не только регуляционные, но и экстраполяционные, то есть рассудочные, свойства мозга как программирующего устройства высшей нервной деятельности и зачаточного интеллекта. Таким образом, головной мозг, включавший в себя прежде всего весь совокупный спектр аналитико-инициаторных фн. центров сигнальных подсистем, стал в конце концов органом высшей интеграции физиологической и духовной деятельности человека как фщ. единицы систем уровня К.
   Наряду с указанными процессами продолжалось развитие и гиперсистемных образований уровня К. Оно происходило путем фн. дифференциации и создания ячеек, отличающихся новыми фн. алгоритмами, с одновременной их интеграцией. Так возникло рыболовство, скотоводство, земледелие. Появились первые ремесла: производство орудий и инструментов, утвари, пошив одежды. Вследствие этого усилилась фн. специализация фщ. единиц - людей. Так, одни все более совершенствовали фн. алгоритмы рыболовства, другие - алгоритмы по уходу за домашними животными, третьи - способности охотника, четвертые все быстрее и в больших количествах мастерили орудия труда и предметы быта, пятые показывали больше умения в обработке земли и выращивании растений. Уже 7-13 тыс. лет назад людям были известны каменный топор, мотыга, лук, серп, первый ткацкий станок. Около 6 тыс. лет назад люди научились плавить медь и стали изготавливать орудия из металла. Появились плуг, медный топор, медный серп и т.д.
   Ввиду того, что биологически все люди были равны, то есть гомологичны и имели одинаково устроенные подсистемы своих организмов, они могли выполнить почти что любой из алгоритмов перечисленных выше фн. ячеек. Разница была лишь в том, что разные фщ. единицы - люди могли выполнять одни и те же фн. алгоритмы по разному: одни - быстрее и более точно, другие - менее эффективно. Это было вполне естественно в силу того, что у людей, постоянно занимавшихся, например, земледелием, происходило постепенное генетическое закрепление способности к выполнению соответствующих фн. алгоритмов. Пользуясь ими, они лучше других знали где, как и когда обрабатывать землю, что и когда высаживать в нее, как ухаживать за растениями и когда их убирать. Люди, занимавшиеся изготовлением орудий, знали лучше, как обрабатывать камень, кость, дерево или металл, чтобы придать им необходимую для выполнения той или иной функции форму, и т.д. Указанные навыки функционирования передавались по наследству от поколения к поколению, все больше закрепляя посредством генетического кодирования способность фщ. единиц к выполнению определенного ряда специфических фн. алгоритмов. По мере совершенствования человеческого организма поведение людей становилось все более лабильно и тренируемо, так что под влиянием условий воспитания и социального окружения навыки функционирования стали достигать все более разного уровня развития и эта разница в свою очередь закреплялась генетическим путем. Таким образом было положено начало появлению генетической функциональной неоднородности людей, то есть разновеликой наследственной способности выполнять те или иные фн. алгоритмы, отражавшей прежде всего неодинаковую физиологическую предрасположенность той или иной индивидуальной структуры головного мозга к формированию тех или иных аналитико-инициаторных фн. центров сигнальных подсистем.

Первобытные общины. Одновременно с эволюционным развитием фщ. единиц и появлением новых фн. ячеек происходила дальнейшая структурная интеграция гиперорганизмов 1-го типа путем совершенствования внутрисистемных связей между их фн. ячейками. Первой известной такой структурой после первобытного стада следует считать родовую общину. Она не отличалась большой сложностью. Все ее ячейки были примерно равнозначны, располагались примерно на одном фн. уровне и имели различия лишь в наборе фн. алгоритмов. Однако, со временем среди них постепенно все более выделялись фн. ячейки старейшин, которые, как правило, занимали наиболее опытные и достаточно влиятельные члены общины, способные тем или иным образом внушить к себе уважение других. Их опыт представлял собой наибольший запас фн. алгоритмов, зафиксированных в их головном мозге. Все это способствовало перемещению фн. ячеек старейшин вверх по вертикали структурной организации гиперорганизмов, ставя оставшиеся в нижнем слое фн. ячейки членов общины в организационное подчинение. (Ранее, как мы помним, фн. ячейку вожака в стаде занимал самый физически сильный его член, а не самый мудрый и умный, как теперь. В этом и заключается главнейшая разница между гиперорганизмами животных и людей.) Фн. ячейки старейшин стали сосредоточивать первые алгоритмы организации и управления, то есть функции, касающиеся деятельности гиперорганизма как такового.

   Несколько родов, живших в одной местности, составляли племя. Все племя говорило на одном языке, имело общие обычаи и общий фонд фн. алгоритмов. Во главе племени стоял совет старейшин, являвшийся первым в истории зачаточным органом коллективного руководства: он распределял между родами места для охоты, выпаса скота и земледелия, разбирал споры между родичами. По мере роста числа племен между ними все чаще стали возникать территориальные войны, в результате которых появились новые структурные формирования: фн. ячейки воинов и их предводителей. Постепенно родовую общину стала сменять соседская община, дав новый толчок в увеличении генофонда ее членов. Раздражителями членов общины для выполнения алгоритмов тех или иных ячеек служили, с одной стороны, инстинкт самосохранения и прочие собственные ассоциации, основанные на I-ой сигнальной подсистеме внутренней самоинформации организма: голод, холод, жажда и т.п. С другой стороны, все большую роль начали играть внешние раздражители: указания старейшин, старших, других членов общины и т.п., побуждавшие людей к выполнению в определенной очередности необходимого перечня алгоритмов. При этом внутренний механизм действия каждой фщ. единицы был уже довольно сложным и составлял приблизительно следующую цепочку чередования быстросменяющихся событий: раздражение анализ ассоциация возбуждение или торможение той или иной ткани организма, приводящее к пространственному перемещению некоторого его органа согласно требуемому алгоритму. Все это должным образом координировалось в пространстве-времени.
   Отсутствие возможности генетической записи гиперсистемных фн. алгоритмов, а также необходимость дальнейшего совершенствования внутрисистемных связей между фн. ячейками гиперорганизмов привело 5 тыс. лет назад к появлению письменности, которая стала помогать использовать в еще больших масштабах преимущества II-ой сигнальной подсистемы. Теперь уже человеку, находившемуся в фн. ячейке возбудителя, необязательно было отдавать словесный сигнал человеку в фн. ячейке возбуждаемого. Достаточно было зафиксировать и передать его символическое изображение.
   Разбросанные по различным ареалам племена имели свои индивидуальные пути развития, которые отличались друг от друга, в результате чего неодинаково складывался генофонд и алгоритмофонд каждого из них. Известно, что каждое новое качество Материи помимо развития во времени тяготеет также и к развитию в пространстве. В силу этого племена с более богатым генофондом и/или алгоритмофондом объединялись (путем подчинения их себе) с племенами, имевшими более скудный гено- и/или алгоритмофонд, при этом происходило взаимное смешение фондов, что отвечало требованиям фн. развития Материи в пространстве-времени. Итогом указанного процесса, как и процесса развития гиперорганизмов 1-го типа, явилась интеграция фн. ячеек уровня К в сложнейшее системное образование, каковым следует считать государство. Первыми известными государствами были государства Древнего Египта, возникшие более 5 тыс. лет назад.

Рабовладельческие государства. Развитие первых государств происходило прежде всего путем территориального расширения с одновременным увеличением фщ. материала присоединяемых соседних поселений. В итоге это привело к созданию динамически устойчивых гиперорганизмов 1-го типа - рабовладельческих государств Египта, Индии, Китая, Греции и Рима, структурная организация которых отвечала требованиям Развития Материи того времени. Вместе с тем, в результате действия в гиперсистемах общих для всех развивающихся систем центров с энергетическим и энтропийным факторами, с течением времени наблюдалось все большее иерархическое организационное расслоение гиперорганизмов по структурной вертикали, приведшее к появлению так называемых фн. пирамид. Наиболее сформировавшейся в структурном отношении в рабовладельческих государствах была фн. пирамида государственного управления (первый элемент еще неосознанной потребности самоорганизации), включавшая управленческие, репрессивные и вспомогательные подсистемы. Она также охватывала рабовладельческие хозяйства, внося определенную упорядоченность в связях по вертикали между фн. ячейками рабов, надсмотрщиков, управляющих и рабовладельцев, путем их соответствующего соподчинения. Фн. ячейки крестьян, ремесленников и некоторых других слоев населения были еще слабо ассоциированы.

   Благодаря совершенствованию орудий производства и технологических алгоритмов, индивидуальный труд земледельцев и скотоводов той эпохи стал намного производительней труда их первобытнообщинных предшественников. Поэтому они могли затрачивать уже меньше труда и времени на удовлетворение потребностей собственных организмов. Но поскольку движение Материи в качестве ведет к постоянной дифференциации функций, это соответствующим образом отражается на системной организации гиперорганизмов. Следствием этого процесса и явилось появление рабовладельческих хозяйств, структурная композиция которых позволяла принуждать основную массу фщ. единиц заниматься ординарным трудом в течение большего времени, чем это требовалось для удовлетворения их личных потребностей. В результате же прибавочного труда ими создавался продукт, который мог использоваться для поддержания в фщ. состоянии нескольких свободных от ординарного труда фщ. единиц - людей, давая им возможность употреблять освободившееся время своего производительного функционирования для выполнения алгоритмов в других, вновь организующихся по мере движения Материи в качестве, фн. ячейках. Вполне естественно, что большая часть указанного фщ. материала - рабы - занимала самый нижний ряд фн. пирамиды и находилась в наиболее подчиненном положении после рабочего скота. Лишь постоянная угроза побоев со стороны надсмотрщиков была основным раздражителем их нервной системы, побуждая выполнять на пределе физических возможностей организма те или иные монотонные производственные алгоритмы.
   Рассмотрим, для чего же развивающейся Материи на данном этапе ее Развития потребовалась столь негуманная системная реорганизация. Для этого достаточно вспомнить, что наряду со структурной интеграцией внутригосударственных подсистем гиперорганизмов продолжались и морфогенетические корреляции в высшей нервной деятельности человеческого организма. Известно, что многие свойства нервной системы и психики человека, определяющие тип его высшей нервной деятельности, черты и свойства индивидуального поведения, специфические личные интересы и склонности, так же как нормы и формы индивидуальной реакции на всевозможные внешние стимулы и раздражители, включая и определяемые социальным окружением, в той или иной мере наследственно детерминированы. Следовательно, уже при рождении люди по своим потенциальным фн. свойствам и возможностям, иными словами, по природным способностям - разнообразны, не равны. В силу этого ансамблевая организация нейронных структур ЦНП, все более кооперативная деятельность громадного количества анализаторов и инициаторов все более совершенных фн. центров полушарий головного мозга положили начало появлению и развитию у отдельных индивидуумов третьей сигнальной подсистемы организма человека, раздражителем ассоциативных элементов которой стала "проблема", вызываемая обычно отсутствием возможности выполнения каких-либо фн. алгоритмов, чаще в силу их незнания.
   В период своего зарождения III-я сигнальная подсистема, имеющая также название "стереотип динамический", функционировала в так называемом индуктивном режиме, при котором ее деятельность носила случайностный характер. Так, например, заметив, что медь, попав в первобытный костер, расплавляется и после затвердевания приобретает новую форму, человек вывел алгоритмы выплавки изделий из металла. Вследствие этого схема индуктивного режима выглядит так: проблема фн. алгоритм. С развитием III-й сигнальной подсистемы режим ее функционирования стал носить более дедуктивный оттенок, то есть иметь более целенаправленный характер. Поэтому схема дедуктивного режима выглядит следующим образом: проблема фн. алгоритм. В результате в алгоритмических наборах отдельных фн. ячеек все чаще стали появляться сегменты функционирования с использованием III-ей сигнальной подсистемы в дедуктивном режиме. Соответствующие им периоды мы назовем функционированием II-го порядка, занимавшим иногда все время активного функционирования отдельных фщ. единиц. Этот вид функционирования следует отличать от функционирования I-го порядка, которое было присуще подавляющему большинству фн. ячеек ординарного труда, заключающегося в регулярном повторении уже известных фн. алгоритмов, найденных ранее с помощью III-ей сигнальной подсистемы.
   Постепенная кортикализация (привязка к определенным участкам мозга) появления, а затем и нахождения новых фн. алгоритмов еще более повысила значение головного мозга в системной эволюции и структурной организации гиперорганизмов I-го типа. Однако, в ту далекую эпоху зачатки III-ей сигнальной подсистемы появлялись лишь у незначительного числа существовавших людей, в то время как у основной их массы главной доминантой оставались раздражители II-ой сигнальной подсистемы. Но даже начальный период развития III-ей сигнальной подсистемы привел к бурному расцвету античной науки и искусства, разработке новых технологических процессов и организационных форм. Воспринимающие рецепторы III-ей сигнальной подсистемы лежат в недрах многоконтурных нейронных ансамблей, организованных в многочисленные гетерофункциональные анализаторы, в которых протекают сложные биохимические процессы. Инициируемые "проблемой"-раздражителем очаги возбуждения доминируют в соответствующих областях структуры головного мозга до тех пор, пока в них не сассоциируется "решение", приводящее к ответой реакции подсистем организма и сопровождающееся появлением (выполнением) ряда новых фн. алгоритмов. Однако, проблема-раздражитель может быть воспринята и вызвать возбуждение, а также стать инициатором ассоциации решения не в каждом головном мозге, а лишь в том из них, который имеет тонко скомпонованную структурную цепь соответствующим образом настроенных рецепторов, анализаторов, ассоциаторов и трансляторов, формирующих четко выделяющийся фн. центр. Все прочие варианты формирования фн. центров головного мозга, а также аналогичные описанному выше, но в которых нечетко функционирует даже хотя бы одно из звеньев в указанной цепи, не говоря уже об отсутствии того или иного из них, не позволяет людям воспринимать или анализировать те или иные проблемы, либо выдавать переведенные на язык фн. алгоритмов соответствующие решения. Вот почему ученые и писатели, композиторы и художники, но прежде всего организаторы и изобретатели - это люди, у которых фн. центры III-ей сигнальной подсистемы ЦНП доминируют над фн. центрами II-ой.
   Вместе с тем, для того, чтобы нормально функционировать, индивидуум с феногенотипом организатора должен попасть в фн. ячейку, ответственную за структурную организацию той или иной части системы гиперорганизма. Так же как и изобретатель, даже занимая соответствующую фн. ячейку, должен иметь условия и достаточный психологический потенциал: потребности минус возможности проблема, чтобы реализовать свой потенциал. Но не всегда в структуре гиперорганизмов случается так, что человек с определенными фн. способностями попадает в соответствующую его феногенотипу фн. ячейку. Следствием этого всегда является снижение в той или иной степени эффективности функционирования всей системы в целом. Если такое реже встречалось в первобытном стаде, где вожак (позднее старейшина) отбирался естественным отбором изо всей массы сородичей, то это участилось в рабовладельческих государствах, хотя на первой стадии развития их структура отвечала требованиям законов движения Материи в качестве-времени, поскольку довольно легко впитывала вновь появлявшиеся фн. ячейки и не препятствовала их дальнейшей дифференциации с обособлением ячеек II-го порядка.
   Иерархическое возвышение фн. ячеек рабовладельцев над фн. ячейками рабов и других фщ. единиц гиперорганизмов давало им возможность с помощью фн. центров собственной III-ей сигнальной подсистемы (если она у них при этом была) или фн. центров III-ей сигнальной подсистемы своего способного управляющего отыскивать новые организационные формы в пределах своих владений. Излишки же продуктов, полученных за счет дополнительной эксплуатации труда рабов, отчасти перепадали также и на содержание других людей - фщ. единиц в фн. ячейках II-го порядка, поскольку, помимо прочих особенностей, отличительной чертой фн. ячеек II-го порядка является то, что занимающие их фщ. единицы, функционируя в одном из режимов III-ей сигнальной подсистемы, вынуждены тратить на это практически все время своего активного функционирования с минимальным иногда результатом. Времени на функционирование I-го порядка, то есть непосредственное производство продуктов питания, у них практически не остается, что вынуждает гиперсистемы всегда иметь такую структурную организацию, когда фщ. единицы фн. ячеек II-го порядка содержатся как бы за счет результатов функционирования фщ. единиц в фн. ячейках I-го порядка. И действительно, античные скульпторы, художники и ювелиры, философы и поэты, сенаторы и военоначальники, но прежде всего организаторы, изобретатели и управляющие не могли бы эффективно функционировать в своих фн. ячейках, если бы вместо этого они были вынуждены ежедневно с утра до вечера обрабатывать землю или ухаживать за скотом. Вместе с тем, земледельцы и скотоводы также не имели достаточно свободного времени активного функционирования, чтобы значительно расширить его сегменты на фн. алгоритмы II-го порядка.
   Как известно, каждый человек с разной степенью генетической детерминации своих фн. свойств при адекватных условиях жизни наследует геномную ДНК молекулярной массой в 1,8 1012 дальтон, что соответствует примерно 3 млн. генов. Тем не менее, слагавшийся в античную эпоху феногенотип людей, ввиду дальнейшего углубления дифференциации индивидуальных совокупных спектров фн. центров сигнальных подсистем ЦНП, все более специализировался, делая различными способности к выполению тех или иных фн. алгоритмов у разных людей. Вследствие этого одни лучше могли играть на музыкальных инструментах, но хуже умели ухаживать за животными; другие хорошо изготовляли гончарные изделия, но не имели пластики движений для танцев; третьи с большим вкусом рисовали картины или слагали стихи, но были плохо приспособлены к выполнению фн. алгоритмов земледельца и т.п. Таким образом, дифференциация фн. ячеек и расширение суммативного спектра их фн. алгоритмов вела, несмотря на всю биологическую универсальность человеческого организма, к генотипной специализации индивидуальных совокупных спектров фн. центров сигнальных подсистем головного мозга, что в свою очередь отражалось на профессиональной ориентации фщ. единиц - людей. По этой же причине земледельцы и скотоводы, помимо поддержания жизни в своих организмах, вынуждены были своим трудом производить жизненные средства для поддержания в режиме активного функционирования фщ. единиц, заполнявших фн. ячейки II-го порядка.
   По мере движения Материи по координатам качества-времени наступил, наконец, момент, когда системная организация рабовладельческого государства перестала отвечать необходимому темпу прироста количества новых фн. ячеек, заполненных соответствующими фщ. единицами, и прежде всего соотношению прироста числа фн. ячеек II-го порядка к фн. ячейкам I-го порядка. Причиной этому явилось то, что в государствах этого типа принадлежность к какому-либо сословию, то есть соответствующая ячейка социального пребывания (функционирования) передавались практически только по наследству, вследствие чего человек, обладавший генотипом с каким-либо доминирующим фн. центром III-ей сигнальной подсистемы, но рожденный в семье раба, так и оставался в фн. ячейке раба, не имея возможности полностью использовать свои фн. способности. Вместо этого он был вынужден выполнять несоответствующие его генотипу фн. алгоритмы I-го порядка, чему он органически противился. В то же время фн. ячейку рабовладельца, являвшегося номинально организатором всех работ в своих владениях, часто мог занять человек со слабо развитым либо с несформировавшимся вовсе фн. центром организаторства III-ей сигнальной подсистемы. В результате этого он был неспособен надлежащим образом выполнять алгоритмы организатора, заключающиеся, как известно, в систематическом определении оптимальной структуры фн. ячеек данного гиперорганизма и взаимосвязи между ними, установлении для каждой фн. ячейки оптимального перечня фн. алгоритмов, а также заполнении каждой ячейки соответствующей фщ. единицей, способной выполнять установленные алгоритмы. Указанные несоответствия все чаще вели к переполяризации биосоциального потенциала в гипероганизмах, когда с одной стороны ячейку рабовладельца-организатора занимал фщ. единица - человек с неразвитыми фн. центрами III-ей сигнальной подсистемы, становясь таким образом паразитирующей фщ. единицей гиперсистемы, в то время как одну или несколько фн. ячеек его рабов занимали фщ. единицы - люди с генотипом более высокого порядка. Возникавшие в силу этого структурные отклонения приводили в отдельных ситуациях к восстаниям рабов. Однако, даже в случае удачи, восставшие не знали иной структурной самоорганизации фн. ячеек кроме деления на рабовладельцев и рабов. Поэтому победивший раб стремился занять лишь фн. ячейку рабовладельца и сделать бывших рабовладельцев своими рабами. Неассоциированные крестьяне и ремесленники вообще практически не вовлекались в эти структурные перетряски.
   Онтогенетическое развитие человека и его морфофизиологическая дифференциация подчиняется принципу рекапитуляции и осуществляется под контролем генетической программы, закодированной в 46 хромосомах, локализованных в ядре каждой соматической клетки любого нормального человека независимо от его расовой, национальной или классовой принадлежности. Принципы и механизмы управления процессами биосинтеза у человека не отличаются от таковых у организмов III-го поколения, а передача наследственной информации от родителей к потомству охватывается общей теорией наследственности. Исходя из того, что хромосомный генофонд генотипа складывается из геномного кода редуцированной информации гамет обоих родителей, не всегда сложившаяся специализированная фн. способность одного из родителей после передачи преобладает в генотипе их потомства. По этой причине в семье музыканта может родиться сын, неспособный к занятиям музыкой; у храброго воина может быть хилый сын-трус; у скупых родителей - расточительные дети; у хорошего организатора - посредственный исполнитель; у трудолюбивого и энергичного отца - пассивный и ленивый сын и т.д.
   В равной степени и у ничем не примечательных родителей может родиться ребенок, одаренный не совсем обычным спектром фн. центров сигнальных подсистем головного мозга, способным исключительно хорошо выполнять один из наборов узкоспециализированных фн. алгоритмов. Вследствие этого, наряду с ростом числа фн. ячеек II-го порядка, засорявшихся паразитирующими фщ. единицами, происходила одновременная все большая потеря стимула функционирования в ячейках I-го порядка, поскольку, ввиду продолжавшейся феногенотипной эволюции человека, заложенный в основу действия рабовладельческих гиперсистем раздражитель - угроза применения физического насилия - все более переставал эффективно приносить необходимые результаты, выраженные в увеличении производства прибавочного продукта каждой фщ. единицей I-го порядка. Более того, вызываемое им раздражение ЦНП вместо генерирования необходимого возбуждения подсистем организма фщ. единиц - рабов для выполнения тех или иных алгоритмов I-го порядка все чаще вело к тормозящему нормальное функционирование стрессовому их состоянию, производившему обратный эффект. Поэтому раб, имевший генотип с активизированной III-ей сигнальной подсистемой, со всей энергией противился выполнять требуемые от него фн. алгоритмы I-го порядка и, обладая способностями мастерить новые виды орудий труда, не желал гнуть спину на чужих плантациях, используя устаревший инвентарь.
   Таким образом, рабовладельческое наследование ограниченного числа фн. ячеек II-го порядка, и прежде всего ячеек управления, с одной стороны, и увеличение числа индивидуумов с активизированной III-ей сигнальной подсистемой, с другой, привело к тому, что структура рабовладельческого государства постепенно становилась все большим тормозом движения Материи в качестве-времени, и это явилось главной причиной необходимости теперь уже ее реорганизации.
   Период существования античных рабовладельческих государств, бывших в свое время значительным шагом вперед в развитии человеческого общества по сравнению с первобытными общинами, продолжался более 5 тыс. лет и закончился в середине первого тысячелетия н.э. К тому времени Человечество насчитывало уже около 230 млн. одновременно живущих человек. С этого момента наступила эпоха гиперорганизмов II-го типа, обладавших системной организацией так называемых феодальных государств.

Феодальные государства. Их появление охарактеризовалось процессами системной реорганизации человеческого общества, затрагивающей, как правило, всю структуру гиперсистем. К этому времени производительная сила функционирования единиц в ячейках I-го порядка ранее слабо ассоциированных крестьян и ремесленников значительно увеличилась. Это стало возможным благодаря результатам эпизодических в толще тысячелетий античного периода усилий тех еще немногих тогда фщ. единиц с активной III-ей сигнальной подсистемой, способствовавших усовершенствованию орудий труда, технологических алгоритмов, широкому использованию фн. способностей животных и т.д. В итоге указанных процессов произошло образование новых фн. пирамид общества, интегрированных на базе все более ассоциировавшихся фн. ячеек крестьян и ремесленников. Структура этих пирамид стала включать гораздо большее количество фн. ячеек II-го порядка, вследствие чего повысилась вероятность попадания в них людей с активной III-ей сигнальной подсистемой. Углубление различий, отличавших наборы фн. алгоритмов промышленных ячеек от сельскохозяйственных, накладывало свой отпечаток и на особенности построения соответствующих фн. пирамид. Так, если в сельском хозяйстве в их основе лежала земельная собственность, то в промышленности главенствующую роль стала играть собственность на все усложняющиеся средства производства. Увеличение числа фн. ячеек II-го порядка, заполнявшихся соответствующими фщ. единицами с более развитым феногенотипом, позволило еще более активизировать процесс повышения производительной силы функционирования во всех фн. ячейках гиперорганизмов, в том числе в ячейках I-го порядка, что в свою очередь автоматически способствовало дальнейшему росту числа заполняемых ячеек II-го порядка, тем самым удовлетворяя требованиям движения Материи в качестве-времени.

   Таким образом, указанная взаимозависимость стала определяющим критерием уровня развития цивилизации того или иного общества, поскольку, чем больше
   1) количество фн. ячеек II-го порядка относительно ячеек I-го порядка,
   2) совокупный феногенофонд заполняющих их фщ. единиц,
   3) коэффициент соответствия фщ. единиц фн. ячейкам (или фн. ячеек фщ. единицам),
   тем выше уровень цивилизации данного общества, оптимальней его структура и эффективней его системная организация. И действительно, в рабовладельческих государствах число фн. ячеек I-го порядка (рабов и т.п.) было значительно большим в сравнении с относительно малым количеством фн. ячеек рабовладельцев и прочих ячеек II-го порядка. В структуре гиперорганизмов II-го типа число фн. ячеек II-го порядка резко возросло, повысился коэффициент соответствия прогрессирующих в фн. способностях фщ. единиц постоянно дифференцировавшимся фн. ячейкам, и в особенности, ячейкам II-го порядка. Вместе с тем, происходившая дифференциация ячеек представляла собой их специализацию по наличию разреженных наборов входивших в них фн. алгоритмов. Этот процесс сопровождался дальнейшей интеграцией гиперсистем и требовал укрепления взаимосвязи между умножающимися разнотипными ячейками. В связи с этим все большее значение стала приобретать роль обмена между фщ. единицами результатами своего функционирования в ячейках.
   Со временем посредническая функция при обмене легла на деньги, которые в качестве всеобщего средства платежа, а впоследствии и накопления, становились также и унифицированным раздражителем III-ей сигнальной подсистемы, в той или иной степени развившейся уже у большинства членов человеческого общества того времени. Инициируемое им возбуждение ЦНП через сложнейшую рефлекторную цепь генерировало такое состояние организма фщ. единиц, которое способствовало максимальной эксплуатации, в том числе и самоэксплуатации, его способностей выполнять те или иные фн. алгоритмы. Включение по этой причине в наборы алгоритмов практически всех ячеек любого порядка сегментов функционирования, нагружавших III-ю сигнальную подсистему человека, хотя и вело к усилению генотипного и социального расслоения общества, тем не менее, служило достаточным психологическим стимулом для нормального функционирования единиц в структурах гиперсистем II-го типа, в том числе феодальных крестьян и ремесленников. Создаваемый ими все больший прибавочный продукт позволял увеличить количество фн. ячеек II-го порядка, что в свою очередь вело к их дальнейшей дифференциации и интеграции, приведшим к возникновению структур новых надстроечных пирамид, к которым следует отнести церковную, военную, судебную и другие. Продолжала совершенствоваться и госуправленческая пирамида.
   Вместе с тем, дальнейшая эволюция системной организации головного мозга и ЦНП человеческого организма привела к тому, что на определенной стадии индивидуального развития сложнейшие микроструктуры некоторых из них эпизодически стали способны реагировать на новый вид раздражения - "проблема в будущем". Генерируемое при этом возбуждение областей головного мозга в отдельных случаях, в результате сложнейшей цепи биохимического процесса, происходившего в нем, способствовало появлению соответствующих "решений". Структуры головного мозга, участвующие в этой наивысшей рефлекторной деятельности живого вещества Материи, легли в основу образования IV-й сигнальной подсистемы человеческого организма, которую, как и третью, вернее было бы назвать "решающе-организующей" подсистемой.
   Вполне естественно, что в то время происходило только начальное формирование указанной подсистемы, которое включало развитие всех ее составных микрочастей, отвечающих за выполнение функций в следующей последовательности: восприятие раздражения его оценочный анализ ассоциация возможных решений их оценка выдача окончательного "решения проблемы в настоящем или будущем". Неудовлетворительное функционирование по любой причине хотя бы одной из микроструктур головного мозга, отвечающей за любое звено в цепи этого материального процесса, имеющего биохимическую основу, вело к снижению эффективности работы всей данной сигнальной подсистемы в целом. В то же время на гиперсистемном уровне организации в наборах алгоритмов отдельных фн. ячеек все чаще стали появляться сегменты так называемого функционирования III-го порядка, явившегося зародышем современного нам управления и планирования, при этом чем выше по структурной вертикали пирамиды размещалась данная фн. ячейка, тем большим в ней был этот сегмент. Наибольшей доли он достигал в ячейках вершин пирамид. Материальным обеспечением функционирования III-го порядка могла служить лишь нервно-психическая деятельность, осуществлявшаяся с помощью III-ей и IV-ой сигнальных подсистем головного мозга человеческого организма, и поэтому алгоритмы этого функционирования были способны хорошо выполнять только фщ. единицы с наиболее развитыми III-ей и IV-ой сигнальными подсистемами.
   Все большее возрастание в фн. ячейках времени совокупного функционирования II-го и III-го порядка способствовало дальнейшей системной организации человеческого общества, росту его производительных сил, расцвету науки и искусства. Важным фактором роста потенциальных возможностей производительного функционирования стало дальнейшее дифференцирование усложнявшихся ремесленных технологических процессов на отдельные операции. Созданные на этой основе мануфактуры и мастерские явились зародышами современных фабрик и заводов, колыбелями машинного производства. Все это вело к резкому увеличению числа фн. ячеек II-го и III-го порядка, их большей интеграции. В итоге, в развитии человеческого общества еще более активизировались оба параллельно протекающих системообразующих процесса. Один из них, как известно, детерминирован влиянием социального структурализма и характеризуется расслоением, в соответствии с наборами алгоритмов функционирования, фн. ячеек по уровням пирамид. Второй процесс обусловлен действием законов феногенодинамики фщ. единиц, согласно которым они, в зависимости от степени развития их III-ей и IV-ой сигнальных подсистем, в той или иной мере приспособлены выполнять алгоритмы в ячейках I - III порядка. При этом, чем больше степень индивидуального развития высших сигнальных подсистем данного организма, тем выше порядок функционирования, который он способен эффективно осуществлять.
   Схематично этот процесс напоминает порядок движения молекул воды, когда молекулы, имеющие большую температуру, поднимаются до определенного уровня вверх, в то время как молекулы с пониженной температурой опускаются до определенного уровня вниз. Подобно этому, для эффективного функционирования фщ. единиц - людей с наличием развитых сигнальных подсистем необходимы также и условия фн. ячеек соответствующего уровня. В равной степени для результативного наличия в структурах гиперсистем фн. ячеек II-го и III-го порядка требуется безусловное их заполнение фщ. единицами с максимально развитыми высшими сигнальными подсистемами организма. История доказывает, что только при выполнении указанных условий сочетания фщ. единиц и фн. ячеек может быть достигнуто состояние социальнодинамического равновесия в гиперсистемах человеческого общества, и это с уверенностью можно назвать относительным пределом его системного развития.
   Лежавшие в основе организации гиперорганизмов II-го типа феодальные отношения, определявшие способ заполнения фн. ячеек государственных структур того времени фщ. единицами, на определенном этапе развития общества стали сдерживающим образом влиять на его прогресс, а вместе с тем и на движение Материи в качестве-времени. Причина этого заключалась в том, что фн. ячейки II-го и III-го порядка пирамид имели право занимать только фщ. единицы дворянского сословия, в то время как нижний слой фн. ячеек I-го порядка сплошь заполнялся лишь людьми нижнего сословия. Несмотря на лучшую фн. подготовку в дворянском сословии, даже те его фщ. единицы, которые и обладали достаточно развитой высшей сигнальной подсистемой организма, не всегда могли передавать генетическим путем своему потомству способность должным образом выполнять алгоритмы II-го и III-го порядка, в силу чего среди них росла доля единиц со слаборазвитой высшей сигнальной подсистемой, поскольку ни один из них добровольно не желал переместиться (опуститься) в соответствующие уровню их фн. способностей ячейки I-го порядка. Одновременно, среди фщ. единиц нижнего сословия, ввиду продолжавшейся эволюции головного мозга и соответствующих мутационных отклонений, периодически рождались индивидуумы с хорошо развитыми высшими сигнальными подсистемами. Но они не могли попасть в фн. ячейки высокого порядка верхней части пирамид, поскольку эти ячейки передавались фщ. единицами дворянского сословия из поколения в поколение по наследству. Все это вело к нарушению законов феногенодинамики и, как следствие, к потере социальнодинамического равновесия общества. Поэтому все чаще встречались случаи, когда, унаследовав фн. ячейку высокого порядка, фщ. единица - дворянин, не имея достаточно развитых высших подсистем головного мозга, был не в состоянии эффективно выполнять соответствующие алгоритмы функционирования, способствуя тем самым процветанию фн. мимикрии. В то же время родившиеся с активно выраженной высшей сигнальной подсистемой индивидуумы нижнего сословия, не имея возможности проявить своих способностей, были вынуждены выполнять упрощенные алгоритмы I-го порядка, что подавляющим образом действовало на их психику, а также желание функционировать вообще. Таким именно образом создавались стандартные ситуации, когда верхи не могли, а низы под влиянием стресса не хотели функционировать в своих фн. ячейках гиперструктур.
   Ситуации, при которых биосоциальный потенциал достигал больших отрицательных значений, неоднократно приводили к народным восстаниям. Однако, добившись хотя бы временного успеха, предводители восставших тут же объявляли себя царями, то есть копировали существовавшую тогда гиперсистемную структуру.
   Случалось также, что фн. ячейки высокого порядка занимали фщ. единицы из числа дворянского сословия с сильно активированной высшей сигнальной подсистемой. Хотя соответствие их фн. способностей занимаемым ими фн. ячейкам принесло немало пользы системному развитию многих государств, тем не менее такие сочетания были скорее редкими исключениями, чем правилом. А сколько одаренных фщ. единиц нижнего сословия так и остались безымянными в фн. ячейках I-го порядка гиперорганизмов II-го типа - навсегда останется неизвестным.
   Безусловно, системная организация общества феодального периода, как до этого и рабовладельческого, выполнила свою историческую миссию в деле развития Материи вообще и человеческой цивилизации, в частности. Достаточно сравнить уровни развития производительных сил, культурного потенциала и биогенетических возможностей Человека в начале этих эпох и в их конце, чтобы убедиться в этом. Однако, просуществовав более одного тысячелетия, гиперорганизмы II-го типа с феодальным принципом заполнения фн. ячеек фщ. единицами были вынуждены уступить место гиперорганизмам III-го типа с так называемым капиталистическим принципом заполнения.

Капиталистический период. Начало новой эпохи ознаменовалось серией буржуазных революций, произошедших в тех странах, где биосоциальный потенциал достигал наибольших отрицательных значений, а устаревающий организационный принцип заполнения фн. ячеек фщ. единицами все более не отвечал возраставшему уровню интеллектуального развития наций. Фн. значение революций заключалось в системной перетряске всех фщ. единиц той или иной относительно замкнутой гиперсистемы, сопровождавшейся насильственным освобождением фн. ячеек верхних частей ее пирамид. Обычно не желавшие покидать указанные ячейки фщ. единицы подвергались физическому уничтожению. В результате этого болезненного, но необходимого для общего прогресса человеческой цивилизации процесса целостной реорганизации гиперсистем постепенно стирались сословно-кастовые грани, отделявшие одни группы фщ. единиц от других и бывшие основным препятствием надлежащего заполнения фн. ячеек гиперструктур. Вследствие этого у каждого индивидуума появилась гораздо большая, чем ранее, возможность в зависимости от уровня развития своего интеллекта заполнить ту или иную ячейку на любом уровне вертикали фн. пирамид.

   Разрушенные во время буржуазных революций гиперструктуры II-го типа требовали создания новых форм социальной интеграции. Появившиеся в связи с этим различные организационные проблемы способствовали росту числа индивидуумов с активной высшей сигнальной подсистемой головного мозга, специализировавшейся именно на этот круг специфических раздражителей. Их деятельное функционирование впоследствии было названо организаторством, представлявшим собой своего рода творчество по формированию оптимальных структур фн. ячеек различных гиперорганизмов и заполнению их соответствующими фщ. единицами (подбор и расстановка кадров). Сформулированное в результате деятельности буржуазных организаторов внутриструктурное регламентирование общественного функционирования, закрепленное новыми правовыми нормами, позволило осуществлять регулярный доступ в ячейки верхних уровней фн. пирамид фщ. единиц с соответствующим феногенотипом, что в свою очередь привело к увеличению доли эффективного выполнения алгоритмов высокого порядка.
   Активное привлечение в ячейки верхних уровней различных пирамид высокоинтеллектуальных фщ. единиц повысило способность головного мозга реагировать на более широкий круг проблем, вслед за чем последовала дальнейшая дифференциация фн. центров его высших сигнальных подсистем по группам проблем-раздражителей, при которой их воспринимающие проблеморецепторы, остро реагируя на одни определенные проблемы-раздражители и передавая возникшее возбуждение в нужном направлении по структуре головного мозга, оставались индифферентными к множеству других. Все это благоприятным образом сказалось на росте числа изобретателей в промышленности и ученых в различных отраслях науки, для которых стало теперь важным попасть в качестве фщ. единицы не только на нужный уровень по вертикали, но и в соответствующую ячейку по горизонтали фн. пирамид. В результате их плодотворного функционирования осуществлялось бурное техническое переоснащение производственных пирамид за счет все большего применения различных машин и механизмов, а также широкого использования сил ветра, падающей воды, затем реакций горения угля, нефти и газа. Положенные в основу действия неорганических структурных образований - машин, эти высокоэффективные энергетические источники позволили высвободить, заменяя их в фн. ячейках I-го порядка, громадное количество фщ. единиц - людей, чья дорогостоящая энергия биохимических реакций, протекающая в тканях мускулов их организмов, служила до этого энергетическим обеспечением выполнения многих соответствующих алгоритмов низшего порядка. Освобожденные от низкоинтеллектуального функционирования в ячейках I-го порядка, фщ. единицы с большей готовностью заполняли ячейки более высокого уровня, способствуя росту их числа. Все это в определенной степени отвечало законам движения Материи в качестве-времени.
   Вызываемая дифференциацией ячеек дальнейшая интеграция общества вела не только к структурному росту существовавших фн. пирамид, но и к умножению их числа. Оптимальность построения и реконструкции каждой пирамиды, а также заполнение ее ячеек соответствующими фщ. единицами всецело зависело от организационных способностей высшей сигнальной подсистемы головного мозга индивидуумов, заполнявших ячейки управления соответствующей пирамиды, при этом условия частного предпринимательства, присущие капиталистической системе отношений, в определенной мере положительным образом влияли на организационное соперничество. К числу вновь созданных фн. пирамид следует отнести такие важные, как банковские, оказывавшие через контроль над движением финансовых средств определенное влияние на развитие тех или иных отраслей экономики.
   Одновременно продолжалась эволюция отделов высших сигнальных подсистем головного мозга человека, повышавшая эффективность его функционирования и приобретавшая способность к раздражению на увеличивающийся перечень стимулов, включая такие как продвижение вверх по вертикали пирамиды, улучшение своего благосостояния, достижение популярности и славы, и другие. Стимул продвижения по службе представлял собой развивающийся поисковый инстинкт индивидуума, облегчающий ему нахождение фн. ячейки в структурной толще пирамид, соответствующей по набору алгоритмов его фн. способностям. Диверсификация видов стимулирования функционирования в каждой ячейке при сохранении денежного вознаграждения в качестве базового, осуществлялась с одновременным их объединением в различные сочетания, от оптимальности которых зависела степень возбуждаемости соответствующих подсистем головного мозга каждой фщ. единицы. Расширявшийся при этом вариетет (разнообразие) отделов восприятия высших сигнальных подсистем со специализацией их по группам проблем-раздражителей имел в своей основе также и самозащитную функцию, поскольку возбуждение ЦНП от всего круга все увеличивающихся проблем привело бы к деструкции (разрушению) хрупкого механизма творческого функционирования.
   Вместе с тем, тонкое нюансирование указанной специализации подсистем головного мозга на определенный вид раздражителей и стимуляторов не имело внешних отличительных признаков и поэтому могло определяться только в ходе процесса функционирования по его результатам. Вследствие этого на первых порах выявление и отбор наиболее приспособленных для данного вида функционирования индивидуумов осуществлялся посредством конкурентной борьбы, позднее - с помощью различных психологических тестов.
   В итоге произведенной гиперсистемной реорганизации человечество за полтора столетия функционирования гиперорганизмов III-го типа достигло такого прогресса, который превысил все достижения, полученные за тысячелетие феодальной эпохи. Эволюция этих саморегулирующихся гиперсистем продолжалась вплоть до нашего времени и ее темп до определенной степени отвечал законам движения Материи в качестве-времени, но стать вершиной системной организации человеческого общества капиталистический (в его первоначальной фазе развития) принцип заполнения фн. ячеек пирамид фщ. единицами, естественно, не мог. Причина этому крылась в его основе, то есть в частной собственности на капитал, передаваемый по наследству без учета феногенотипных особенностей потомства, прямым образом влияющих на фн. способности каждого нового поколения фщ. единиц. В силу этого все более капиталоемкие средства производства развивающейся промышленности создавали порой непреодолимый барьер между фн. ячейками их собственников-руководителей и фщ. единицами-индивидуумами со специализированной на организацию и управление высшей сигнальной подсистемой головного мозга, но не владеющих капиталом. Этот барьер был не менее непреодолим и при заполнении фщ. единицами фн. ячеек пирамид госуправления капиталистических стран, где дорогостоящие избирательные кампании, а также отсутствие научно обоснованного подбора кандидатур по их фн. способностям и подготовке вели к избранию на важные государственные посты порой случайных людей из числа имущих или имеющих их покровительство. Но даже самый выдающийся юрист, представитель военных или деловых кругов, или же партийный функционер не всегда может быть хорошим министром или вице-президентом. Однако, если при феодальной раздробленности и патриархальности случаи заполнения верхних ячеек госпирамид малоэффективными фщ. единицами оказывали мало влияния на развитие гиперсистемы в целом, то теперь, при более высоком уровне интеграции общественных организмов, даже низкоэффективное функционирование хотя бы одной из фщ. единиц на вершине пирамид пагубным образом могло повлиять на процесс общественного развития, и чем выше ячейку занимала эта малопродуктивная фщ. единица, тем больший отрицательный эффект она стала производить.
   Таким образом, наличие чрезмерных свобод в капиталистическом понимании, с одной стороны, затрудняющих дальнейшую системную интеграцию общества, а также частное владение и наследование капитала, с другой, стали стоять на пути дальнейшего гиперсистемного развития человеческой цивилизации и тормозить движение Материи в качестве-времени. Вследствие этого капиталистические общественные структуры начального периода стало время от времени лихорадить от социально-экономических потрясений, детерминированных действием законов феногенодинамики и сопровождаемых такими болезненными явлениями, как различного рода кризисы и спады в экономике, банкротства, рост инфляции, локауты, хроническая безработица. Для поддержания социальнодинамического равновесия в капиталистических гиперсистемах раннего периода стали все чаще использоваться такие крайние меры саморегулирования этой формации, как национализация отдельных секторов госэкономики, означавшая факт неспособности прежнего руководства соответствующих управленческих пирамид организовать нормальное их функционирование и развитие. Обе соперничающие тендениции капиталистической интеграции начального периода - монополизация и национализация, а также частная инициатива децентрализованных секторов экономики были все же не в состоянии обеспечить полный гиперсистемный гомеостазис в соответствующих странах до тех пор, пока в них существовало владение и наследование вместе с капиталом и фн. ячеек организаторов и отсутствовало достаточное понимание необходимости, а вместе с ним и научно обоснованная методология заполнения этих ячеек максимально соответствующими фщ. единицами, то есть обладающими необходимым спектром фн. центров высших сигнальных подсистем головного мозга, нацеленных на решение проблем организации данного гиперорганизма. При этом указанные проблемы должны быть их постоянными раздражителями.

Период современной гиперорганизации. Все вышеизложенное создало предпосылки для появления гиперорганизмов IV-го типа, рождение которых совпало с социалистической революцией в России. Сами идеи социального переустройства общества зародились задолго до этого в передовых умах индивидуумов-теоретиков, проживавших в самых развитых странах Западной Европы, но зародились они совершенно не случайно, а были продиктованы самим ходом Развития Материи, действием его законов. А то, что первая такого рода гиперсистемная перетряска произошла именно в России именно в 1917 году, объясняется тем, что в этой стране в силу сложившихся патриархально-монархических устоев имела место значительная задержка в появлении и умножении гиперорганизмов III-го типа. Запоздавшая февральская буржуазная революция не смогла уже в достаточной степени снизить накопившийся к тому времени биосоциальный потенциал большого отрицательного значения, поскольку молодая и слабая буржуазная прослойка не выдвинула еще (или не приобрела) способных организаторов. Однако среди фщ. единиц нижнего сословия их было значительное количество. Поэтому именно они, сплоченные в единую партию с жесткой дисциплиной и руководимые индивидуумами с новыми организационными подходами, стали творцами гиперсистемных организмов нового типа, в организацию которых был заложен социалистический принцип заполнения фн. ячеек фщ. единицами: от каждого - по (его фн.) способностям.

   Отмена частной собственности на капитал ликвидировала правовую основу передачи по наследству, а также возможности занимать фн. ячейки верхней части пирамид любой произвольно долгий период времени. Только в социалистическом государстве, как оно задумывалось теоретиками социализма, за каждым гражданином конституционно закреплялось право занимать любую фн. ячейку любого уровня любой фн. пирамиды без права наследования ее своему потомству. Таким образом, в гиперорганизмах IV-го типа была ликвидирована последняя правовая преграда к заполнению фн. ячеек любыми максимально соответствующими им по фн. способностям фщ. единицами. Возможность же свободного помещения каждой фщ. единицы в зависимости от ее фн. спектра в соответствующую фн. ячейку на любом уровне как по вертикали, так и по горизонтали пирамид полностью отвечала законам феногенодинамики и способствовала поддержанию социальнодинамического равновесия гиперсистемы.
   Идеи социализма и социального переустройства общества стали популярными не только в России. Под влиянием законов Развития Материи они захватили и взволновали умы значительной части населения во многих странах мира, в том числе и с развитой инфраструктурой систем гиперорганизмов. Поэтому революционные преобразования затронули также и многие западные страны. Однако, учитывая, что основу их государственных гиперсистем составляли уже довольно развитые гиперорганизмы III-го типа, пока еще отвечавшие тогдашним требованиям движения Материи в качестве-времени, сколь-нибудь серьезных политических изменений в этих странах не произошло. Вместе с тем, эволюционная потребность в этих преобразованиях сильно повлияла на процесс ускоренного перерастания гиперорганизмов III-го типа их гиперсистем в гиперорганизмы IV-го типа. Это можно проиллюстрировать многими фактами. Сюда можно отнести и последовательный рост прослойки наемных менеджеров-профессионалов, и рост числа акционируемых предприятий и предприятий, управляемых совместно рядом совладельцев, и ограничения при передаче по наследству капитала, и усиление банковского и государственного регулирования промышленного и сельскохозяйственного производства, и многое другое, что способствовало более качественному заполнению фн. ячеек социальных пирамид соответствующими фщ. единицами. Все это вело к снижению отрицательных значений социального биопотенциала и помогало поддерживать социальнодинамическое равновесие в гиперсистемах этих стран.
   Таким образом, начиная с первой трети XX-го столетия человеческое общество, численность которого к тому времени уже превысила 1,6 млрд. человек, стало свидетелем и непосредственным участником глобальной, невиданной ранее, системной интеграция гиперорганизмов IV-го типа, которая требовала еще более четкого сочетания фн. способностей фщ. единиц с выполняемыми алгоритмами занимаемых ими ячеек, одновременно повышая степень отрицательного эффекта от ненадлежащего их функционирования. В связи с этим, как никогда, возросла роль организаторства, ставшего не единичным, эпизодическим актом, а постоянной творческой деятельностью сотен тысяч фщ. единиц - людей, наделенных специализированным феногенотипом.
   Перед специфическим видом функционирования, каковым является организаторство, в современном понимании стоят следующие задачи, которые можно трактовать как умение, способность:
   1. Максимально точно определять:
   а) весь круг имеющихся в данное время у гиперсистемы "проблем для решения" в любой области ее функционирования - от абстрактно-научных до утилитарно-бытовых;
   б) надвигающиеся (ожидаемые) со временем "проблемы будущего" и намечаемые на перспективу "цели развития".
   2. Разбивать данный круг проблем и целей по пространственно-качественно-временным признакам и прикрепить их к соответствующим гиперорганизмам. Ни одна из проблем не должна быть оставлена без внимания или соответствующего прикрепления.
   3. Формировать оптимальные структуры фн. ячеек всех гиперорганизмов данной системы в соответствии с перечнем проблем и целей, поставленным перед каждым гиперорганизмом для их решения. Постоянно переформировывать гиперструктуры по мере обновления спектра проблем и целей.
   4. Определять для каждой фн. ячейки набор алгоритмов, обусловливая его дифференцированием функций в рамках данного гиперорганизма. Регулярно пересматривать наборы алгоритмов по мере переформирования структур гиперорганизмов в соответствии с динамикой формирования проблем и целей.
   5. Заполнять фн. ячейки соответствующими по своим фн. способностям фщ. единицами, обладающими специфическими спектрами фн. центров высших сигнальных подсистем головного мозга, специализированных к раздражению от доли проблем, поставленных перед данной фн. ячейкой, и их эффективному решению (подбор и расстановка кадров).
   6. Создавать благоприятные условия для нормального функционирования всех фщ. единиц в своих фн. ячейках, а также обеспечивать контроль за их надлежащим функционированием.
   7. По мере изменения в онтогенезе индивидуальных фн. способностей каждой фщ. единицы, обеспечение своевременного их перемещения в другие, более соответствующие им фн. ячейки с одновременным заполнением освободившихся ячеек новыми, не менее специализированными фщ. единицами.
   Таким образом, в организаторстве можно выделить два взаимноскоординированных течения:
   1. Формирование оптимальной социальной гиперструктуры фн. ячеек, максимально отвечающей динамике требующих решения проблем и целей.
   2. Распределение всей имеющейся массы разнородных по своим фн. способностям фщ. единиц по фн. ячейкам гиперорганизмов, соответствующих специализированному феногенотипу каждой из них.
   Вполне естественно, что выполнять колоссальную, все возрастающую организаторскую работу стали способны только люди, имеющие соответственным образом настроенные на "проблемы организации" фн. центры высших сигнальных подсистем головного мозга, и только такие люди могут эффективно функционировать в фн. ячейках организаторов-менеджеров, которые в достаточной мере должен иметь каждый гиперорганизм. Более того, сами организаторы должны быть хорошо сорганизованы в единую фн. пирамиду, что и отразилось в истории фактами создания различных политических партий. Вместе с тем, учитывая, что индивидуумы с наличием специфических спектров фн. центров высших сигнальных подсистем, нацеленных на решение организационных проблем, составляют только часть самодеятельного активного населения каждого поколения человечества, их необходимо постоянно выискивать и, в зависимости от уровня развития и индивидуальной специфики спектров их фн. центров, заполнять ими соответствующие фн. ячейки пирамиды организационного функционирования, максимально загружать их фн. способности, всячески способствуя при этом нормальной их деятельности. Заполнение фн. ячеек организаторов фщ. единицами ни в коей мере не должно носить стохастический (случайный) характер, поскольку казуальное попадание в них несоответствующих фщ. единиц всегда ведет к их нераспорядительности и пассивности, вызванной отсутствием раздражимости стоящими перед ячейкой проблемами и целями, или к их ложной активности, рождающей неправильные, обременительные для соответствующего гиперорганизма решения. Все это снижает эффективность функционирования гиперсистемы в целом, ведет к ослаблению ее фн. потенциала и росту, в силу нарушения законов феногенодинамики, отрицательного значения социального биопотенциала. В конечном итоге, результатом этого является увеличение числа нерешенных проблем и игнорируемых целей, обусловливающее дестабилизацию социальнодинамического равновесия любой гиперсистемы.
   В применении к теории социалистического общества следует подчеркнуть, что свойственные ему объективные законы были и являются законами не только функционирования, но и дальнейшего общественного развития. Поэтому каждое подлинно социалистическое предприяие или учреждение следует рассматривать не как хозяйственный механизм, что выхолащивает из него диалектическое содержание, заранее лишает его возможности развития, а как гиперорганизм, то есть постоянно развивающуюся относительно обособленную для выполнения какой-либо общей функции систему фн. ячеек, заполненных соответствующими фщ. единицами, тесно связанными между собой внутрисистемными межячеечными фн. отношениями. Такой подход к социалистическим организациям в странах, вступивших было на путь построения социализма, мог бы устранить все то, что мешало их развитию. Однако, недопонимание и/или недооценка этого обстоятельства на определенном этапе социалистического развития, длившегося всего несколько десятилетий в ряде стран, привело прежде всего к искажению процессов построения и функционирования наиболее совершенных гиперорганизмов IV-го типа и, как следствие, к нарушению законов феногенодинамики в целом. Более того, даже заполнение самых верхних фн. ячеек (госпартруководства) этих социальных гиперсистем перестало отвечать современным требованиям гиперсистемного формирования и развития, в результате чего это развитие в определенный момент приостановилось, а само социалистическое общество постепенно стало скатываться все больше к пассивности и застою. Все это происходило на сгущавшемся фоне общественно-научной безграмотности, догматизма, схоластики, некомпетентности и воинствующего бюрократизма большей части правящего руководства. В конечном итоге, социалистический эксперимент в его чистом виде, не отвечая более требованиям движения Материи в качестве-времени, в последней трети XX-го столетия под действием законов социальной эволюции постепенно прекратился в большинстве стран, начавших его. Так давно предрекавшаяся конвергенция двух социальных систем вступила в завершающую фазу, разделяя человеческую цивилизацию фактически лишь на две основные категории - страны гиперсистемноразвитые (Северная Америка, большая часть Европы, Япония, Австралия и т.д.) и слаборазвитые (Африка, большая часть Азии, большая часть Латинской Америки и т.д.). Законы Развития Материи, ее Диалектики вновь восторжествовали. Именно они были и остаются мерилом правильности направления движения и развития человеческой формации. Только они диктовали и продолжают диктовать характер действий для преодоления всех имеющихся проблем и достижения всех намеченных целей. Поэтому каждая существующая нация или современное государство, чтобы отвечать требованиям актуального времени, должно безусловно следовать законам гиперсистемной организации и феногенодинамики, вытекающих из Законов Развития Материи, путем постоянного совершенствования композиции внутриструктурных межячеечных связей каждого своего гиперорганизма, обогащения совокупного феногенофонда и обеспечения максимального соответствия фщ. единиц занимаемым ими фн. ячейкам. Только такой подход может позволить этим нациям и государствам создать совершенную систему современных гиперорганизмов IV-го типа и с их помощью резко увеличить свой научно-техническ